Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
NPJ Precis Oncol ; 7(1): 67, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37454202

RESUMO

Genomically-informed therapy requires consideration of the functional impact of genomic alterations on protein expression and/or function. However, a substantial number of variants are of unknown significance (VUS). The MD Anderson Precision Oncology Decision Support (PODS) team developed an actionability classification scheme that categorizes VUS as either "Unknown" or "Potentially" actionable based on their location within functional domains and/or proximity to known oncogenic variants. We then compared PODS VUS actionability classification with results from a functional genomics platform consisting of mutant generation and cell viability assays. 106 (24%) of 438 VUS in 20 actionable genes were classified as oncogenic in functional assays. Variants categorized by PODS as Potentially actionable (N = 204) were more likely to be oncogenic than those categorized as Unknown (N = 230) (37% vs 13%, p = 4.08e-09). Our results demonstrate that rule-based actionability classification of VUS can identify patients more likely to have actionable variants for consideration with genomically-matched therapy.

2.
Front Pharmacol ; 12: 659590, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34349642

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer related death in western countries. The successful treatment of PDAC remains limited. We investigated the effect of Fraction B, which is a fraction purified from catfish (Arius bilineatus, Val.) skin secretions containing proteins and lipids, on PDAC biology both in-vivo and in-vitro. We report here that Fraction B potently suppressed the proliferation of both human and mouse pancreatic cancer cells in vitro and significantly reduced the growth of their relevant xenograft (Panc02) and orthotopic tumors (human Panc-1 cells) (p < 0.05). The Reverse Phase Protein Array (RPPA) data obtained from the tumor tissues derived from orthotopic tumor bearing mice treated with Fraction B showed that Fraction B altered the cancer stem cells related pathways and regulated glucose and glutamine metabolism. The down-regulation of the cancer stem cell marker CD44 expression was further confirmed in Panc-1 cells. CBC and blood chemistry analyses showed no systemic toxicity in Fraction B treated Panc-1 tumor bearing mice compared to that of control group. Our data support that Fraction B is a potential candidate for PDAC treatment.

3.
Front Pharmacol ; 11: 552428, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013390

RESUMO

Glioblastoma multiform (GBM) is the most common primary glial tumor resulting in very low patient survival despite current extensive therapeutic efforts. Emerging evidence suggests that more effective treatments are required to overcome tumor heterogeneity, drug resistance and a complex tumor-supporting microenvironment. PBI-05204 is a specifically formulated botanical drug consisting of a modified supercritical C02 extract of Nerium oleander that has undergone both phase I and phase II clinical trials in the United States for treatment of patients with a variety of advanced cancers. The present study was designed to investigate the antitumor efficacy of this botanical drug against glioblastoma using both in vitro and in vivo cancer models as well as exploring efficacy against glioblastoma stem cells. All three human GBM cell lines, U87MG, U251, and T98G, were inhibited by PBI-05204 in a concentration dependent manner that was characterized by induction of apoptosis as evidenced by increased ANNEXIN V staining and caspase activities. The expression of proteins associated with both Akt and mTOR pathway was suppressed by PBI-05240 in all treated human GBM cell lines. PBI-05204 significantly suppressed U87 spheroid formation and the expression of important stem cell markers such as SOX2, CD44, and CXCR4. Oral administration of PBI-05204 resulted in a dose-dependent inhibition of U87MG, U251, and T98G xenograft growth. Additionally, PBI-05204-treated mice carrying U87-Luc cells as an orthotropic model exhibited significantly delayed onset of tumor proliferation and significantly increased overall survival. Immunohistochemical staining of xenograft derived tumor sections revealed dose-dependent declines in expression of Ki67 and CD31 positive stained cells but increased TUNEL staining. PBI-05204 represents a novel therapeutic botanical drug approach for treatment of glioblastoma as demonstrated by significant responses with in vivo tumor models. Both in vitro cell culture and immunohistochemical studies of tumor tissue suggest drug induction of tumor cell apoptosis and inhibition of PI3k/mTOR pathways as well as cancer stemness. Given the fact that PBI-05204 has already been examined in phase I and II clinical trials for cancer patients, its efficacy when combined with standard of care chemotherapy and radiotherapy should be explored in future clinical trials of this difficult to treat brain cancer.

4.
Integr Cancer Ther ; 19: 1534735420940398, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32975128

RESUMO

Studies have demonstrated that purported biofield therapy emitted from humans can inhibit the proliferation of cancer cells and suppress tumor growth in various cancers. We explored the effects of biofield therapy on tumor growth in the Lewis lung carcinoma and expanded mechanistic outcomes. We found biofield therapy did not inhibit tumor growth. However, the experimental (Ex) condition exposed tumors had a significantly higher percentage of necrosis (24.4 ± 6.8%) compared with that of the Control condition (6.5 ± 2.7%; P < .02) and cleaved caspase-3 positive cells were almost 2.3-fold higher (P < .05). Similarly, tumor-infiltrating lymphocytes profiling showed that CD8+/CD45+ immune cell population was significantly increased by 2.7-fold in Ex condition (P < .01) whereas the number of intratumoral FoxP3+/CD4+ (T-reg cells) was 30.4% lower than that of the Control group (P = .01), leading to a significant 3.1-fold increase in the ratio of CD8+/T-reg cells (P < .01). Additionally, there was a 51% lower level of strongly stained CD68+ cells (P < .01), 57.9% lower level of F4/80high/CD206+ (M2 macrophages; P < .02) and a significant 1.8-fold increase of the ratio of M1/M2 macrophages (P < .02). Furthermore, Ex exposure resulted in a 15% reduction of stem cell marker CD44 and a significant 33% reduction of SOX2 compared with that of the Controls (P < .02). The Ex group also engaged in almost 50% less movement throughout the session than the Controls. These findings suggest that exposure to purported biofields from a human is capable of enhancing cancer cell death, in part mediated through modification of the tumor microenvironment and stemness of tumor cells in mouse Lewis lung carcinoma model. Future research should focus on defining the optimal treatment duration, replication with different biofield therapists, and exploring the mechanisms of action.


Assuntos
Carcinoma , Neoplasias Pulmonares , Animais , Humanos , Pulmão , Neoplasias Pulmonares/terapia , Linfócitos do Interstício Tumoral , Camundongos , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA