Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Biochem J ; 481(6): 405-422, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38381045

RESUMO

The RAS-regulated RAF-MEK1/2-ERK1/2 signalling pathway is activated in cancer due to mutations in RAS proteins (especially KRAS), BRAF, CRAF, MEK1 and MEK2. Whilst inhibitors of KRASG12C (lung adenocarcinoma) and BRAF and MEK1/2 (melanoma and colorectal cancer) are clinically approved, acquired resistance remains a problem. Consequently, the search for new inhibitors (especially of RAS proteins), new inhibitor modalities and regulators of this pathway, which may be new drug targets, continues and increasingly involves cell-based screens with small molecules or genetic screens such as RNAi, CRISPR or protein interference. Here we describe cell lines that exhibit doxycycline-dependent expression KRASG12V or BRAFV600E and harbour a stably integrated EGR1:EmGFP reporter gene that can be detected by flow cytometry, high-content microscopy or immunoblotting. KRASG12V or BRAFV600E-driven EmGFP expression is inhibited by MEK1/2 or ERK1/2 inhibitors (MEKi and ERKi). BRAFi inhibit BRAFV600E-driven EmGFP expression but enhance the response to KRASG12V, recapitulating paradoxical activation of wild type RAF proteins. In addition to small molecules, expression of iDab6, encoding a RAS-specific antibody fragment inhibited KRASG12V- but not BRAFV600E-driven EmGFP expression. Finally, substitution of EmGFP for a bacterial nitroreductase gene allowed KRASG12V or BRAFV600E to drive cell death in the presence of a pro-drug, which may allow selection of pathway inhibitors that promote survival. These cell lines should prove useful for cell-based screens to identify new regulators of KRAS- or BRAF-dependent ERK1/2 signalling (drug target discovery) as well as screening or triaging 'hits' from drug discovery screens.


Assuntos
Proteínas Proto-Oncogênicas B-raf , Proteínas Proto-Oncogênicas p21(ras) , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Sistema de Sinalização das MAP Quinases , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Mutação , Proteínas ras/genética , Inibidores de Proteínas Quinases/farmacologia
2.
J Geriatr Oncol ; 14(1): 101384, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36216760

RESUMO

INTRODUCTION: Geriatric assessment (GA) provides information on key health domains of older adults and is recommended to help inform cancer treatment decisions and cancer care. However, GA is not feasible in many health institutions due to lack of geriatric staff and/or resources. To increase accessibility to GA and improve treatment decision making for older adults with cancer (≥65 years), we developed a self-reported, electronic geriatric assessment tool: Comprehensive Assessment for My Plan (CHAMP). MATERIALS AND METHODS: Older adults with cancer were invited to join user-centered design sessions to develop the layout and content of the tool. Subsequently, they participated in usability testing to test the usability of the tool (ease of use, acceptability, etc.). Design sessions were also conducted with oncology clinicians (oncologists and nurses) to develop the tool's clinician interface. GA assessment questions and GA recommendations were guided by a systematic review and Delphi expert panel. RESULTS: A total of seventeen older adults participated in the study. Participants were mainly males (82.4%) and 75% were aged 75 years and older. Nine oncology clinicians participated in design sessions. Older adults and clinicians agreed that the tool was user-friendly. Domains in the final CHAMP tool (with questions and recommendations) included functional status, falls risk, cognitive impairment, nutrition, medication review, social supports, depression, substance use disorder, and miscellaneous items. DISCUSSION: CHAMP was designed for use by older adults and oncologists and may enhance access to GA for older adults with cancer. The next phase of the CHAMP study will involve field validation in oncology clinics.


Assuntos
Avaliação Geriátrica , Neoplasias , Idoso , Masculino , Humanos , Feminino , Neoplasias/terapia , Oncologia , Autorrelato
3.
NAR Cancer ; 4(4): zcac032, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36267209

RESUMO

Mutations and gene amplifications that confer drug resistance emerge frequently during chemotherapy, but their mechanism and timing are poorly understood. Here, we investigate BRAFV600E amplification events that underlie resistance to the MEK inhibitor selumetinib (AZD6244/ARRY-142886) in COLO205 cells, a well-characterized model for reproducible emergence of drug resistance, and show that BRAF amplifications acquired de novo are the primary cause of resistance. Selumetinib causes long-term G1 arrest accompanied by reduced expression of DNA replication and repair genes, but cells stochastically re-enter the cell cycle during treatment despite continued repression of pERK1/2. Most DNA replication and repair genes are re-expressed as cells enter S and G2; however, mRNAs encoding a subset of factors important for error-free replication and chromosome segregation, including TIPIN, PLK2 and PLK3, remain at low abundance. This suggests that DNA replication following escape from G1 arrest in drug is more error prone and provides a potential explanation for the DNA damage observed under long-term RAF-MEK-ERK1/2 pathway inhibition. To test the hypothesis that escape from G1 arrest in drug promotes de novo BRAF amplification, we exploited the combination of palbociclib and selumetinib. Combined treatment with selumetinib and a dose of palbociclib sufficient to reinforce G1 arrest in selumetinib-sensitive cells, but not to impair proliferation of resistant cells, delays the emergence of resistant colonies, meaning that escape from G1 arrest is critical in the formation of resistant clones. Our findings demonstrate that acquisition of MEK inhibitor resistance often occurs through de novo gene amplification and can be suppressed by impeding cell cycle entry in drug.

4.
Front Cell Dev Biol ; 10: 839997, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35903549

RESUMO

The RAS-regulated RAF-MEK1/2-ERK1/2 signalling pathway is frequently de-regulated in human cancer. Melanoma in particular exhibits a high incidence of activating BRAFV600E/K and NRASQ61L/K mutations and such cells are addicted to the activity of these mutant oncoproteins. As a result three different BRAF inhibitors (BRAFi) have now been approved for BRAFV600E/K- mutant melanoma and have transformed the treatment of this disease. Despite this, clinical responses are typically transient as tumour cells develop resistance. These resistance mechanisms frequently involve reinstatement of ERK1/2 signalling and BRAFi are now deployed in combination with one of three approved MEK1/2 inhibitors (MEKi) to provide more durable, but still transient, clinical responses. Furthermore, inhibitors to ERK1/2 (ERK1/2i) have also been developed to counteract ERK1/2 signalling. However, recent studies have suggested that BRAFi/MEKi and ERK1/2i resistance can arise through activation of a parallel signalling pathway leading to activation of ERK5, an unusual protein kinase that contains both a kinase domain and a transcriptional transactivation domain. Here we review the evidence supporting ERK5 as a mediator of BRAFi/MEKi and ERK1/2i resistance. We also review the challenges in targeting ERK5 signalling with small molecules, including paradoxical activation of the transcriptional transactivation domain, and discuss new therapeutic modalities that could be employed to target ERK5.

5.
J Med Chem ; 65(9): 6513-6540, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35468293

RESUMO

The nonclassical extracellular signal-related kinase 5 (ERK5) mitogen-activated protein kinase pathway has been implicated in increased cellular proliferation, migration, survival, and angiogenesis; hence, ERK5 inhibition may be an attractive approach for cancer treatment. However, the development of selective ERK5 inhibitors has been challenging. Previously, we described the development of a pyrrole carboxamide high-throughput screening hit into a selective, submicromolar inhibitor of ERK5 kinase activity. Improvement in the ERK5 potency was necessary for the identification of a tool ERK5 inhibitor for target validation studies. Herein, we describe the optimization of this series to identify nanomolar pyrrole carboxamide inhibitors of ERK5 incorporating a basic center, which suffered from poor oral bioavailability. Parallel optimization of potency and in vitro pharmacokinetic parameters led to the identification of a nonbasic pyrazole analogue with an optimal balance of ERK5 inhibition and oral exposure.


Assuntos
Proteína Quinase 7 Ativada por Mitógeno , Pirróis , Proliferação de Células , Pirróis/farmacologia
6.
Biochem J ; 479(3): 305-325, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35029639

RESUMO

Inhibitor of kappa B (IκB) kinase ß (IKKß) has long been viewed as the dominant IKK in the canonical nuclear factor-κB (NF-κB) signalling pathway, with IKKα being more important in non-canonical NF-κB activation. Here we have investigated the role of IKKα and IKKß in canonical NF-κB activation in colorectal cells using CRISPR-Cas9 knock-out cell lines, siRNA and selective IKKß inhibitors. IKKα and IKKß were redundant for IκBα phosphorylation and turnover since loss of IKKα or IKKß alone had little (SW620 cells) or no (HCT116 cells) effect. However, in HCT116 cells IKKα was the dominant IKK required for basal phosphorylation of p65 at S536, stimulated phosphorylation of p65 at S468, nuclear translocation of p65 and the NF-κB-dependent transcriptional response to both TNFα and IL-1α. In these cells, IKKß was far less efficient at compensating for the loss of IKKα than IKKα was able to compensate for the loss of IKKß. This was confirmed when siRNA was used to knock-down the non-targeted kinase in single KO cells. Critically, the selective IKKß inhibitor BIX02514 confirmed these observations in WT cells and similar results were seen in SW620 cells. Notably, whilst IKKα loss strongly inhibited TNFα-dependent p65 nuclear translocation, IKKα and IKKß contributed equally to c-Rel nuclear translocation indicating that different NF-κB subunits exhibit different dependencies on these IKKs. These results demonstrate a major role for IKKα in canonical NF-κB signalling in colorectal cells and may be relevant to efforts to design IKK inhibitors, which have focused largely on IKKß to date.


Assuntos
Neoplasias Colorretais/metabolismo , Quinase I-kappa B/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais/genética , Sistemas CRISPR-Cas , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Técnicas de Inativação de Genes , Células HCT116 , Humanos , Quinase I-kappa B/antagonistas & inibidores , Quinase I-kappa B/genética , Interleucina-1alfa/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , NF-kappa B/genética , Fosforilação/genética , Inibidores de Proteínas Quinases/farmacologia , RNA Interferente Pequeno/genética , Transdução de Sinais/efeitos dos fármacos , Transfecção , Fator de Necrose Tumoral alfa/metabolismo
7.
Microbiologyopen ; 10(4): e1200, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34459543

RESUMO

The basal zone of glaciers is characterized by physicochemical properties that are distinct from firnified ice due to strong interactions with underlying substrate and bedrock. Basal ice (BI) ecology and the roles that the microbiota play in biogeochemical cycling, weathering, and proglacial soil formation remain poorly described. We report on basal ice geochemistry, bacterial diversity (16S rRNA gene phylogeny), and inferred ecological roles at three temperate Icelandic glaciers. We sampled three physically distinct basal ice facies (stratified, dispersed, and debris bands) and found facies dependent on biological similarities and differences; basal ice character is therefore an important sampling consideration in future studies. Based on a high abundance of silicates and Fe-containing minerals and, compared to earlier BI literature, total C was detected that could sustain the basal ice ecosystem. It was hypothesized that C-fixing chemolithotrophic bacteria, especially Fe-oxidisers and hydrogenotrophs, mutualistically support associated heterotrophic communities. Basal ice-derived rRNA gene sequences corresponding to genera known to harbor hydrogenotrophic methanogens suggest that silicate comminution-derived hydrogen can also be utilized for methanogenesis. PICRUSt-predicted metabolism suggests that methane metabolism and C-fixation pathways could be highly relevant in BI, indicating the importance of these metabolic routes. The nutrients and microbial communities release from melting basal ice may play an important role in promoting pioneering communities establishment and soil development in deglaciating forelands.


Assuntos
Bactérias/metabolismo , Extremófilos/metabolismo , Hidrogênio/metabolismo , Camada de Gelo/microbiologia , Ferro/metabolismo , Silicatos/metabolismo , Bactérias/classificação , Bactérias/genética , Ciclo do Carbono/fisiologia , Crescimento Quimioautotrófico/fisiologia , Ecossistema , Extremófilos/classificação , Extremófilos/genética , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , Metano/biossíntese , Metano/metabolismo , Oxirredução , RNA Ribossômico 16S/genética
8.
Biochem J ; 478(13): 2619-2664, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34269817

RESUMO

Cells must adapt to changes in their environment to maintain cell, tissue and organismal integrity in the face of mechanical, chemical or microbiological stress. Nuclear factor-κB (NF-κB) is one of the most important transcription factors that controls inducible gene expression as cells attempt to restore homeostasis. It plays critical roles in the immune system, from acute inflammation to the development of secondary lymphoid organs, and also has roles in cell survival, proliferation and differentiation. Given its role in such critical processes, NF-κB signalling must be subject to strict spatiotemporal control to ensure measured and context-specific cellular responses. Indeed, deregulation of NF-κB signalling can result in debilitating and even lethal inflammation and also underpins some forms of cancer. In this review, we describe the homeostatic feedback mechanisms that limit and 're-set' inducible activation of NF-κB. We first describe the key components of the signalling pathways leading to activation of NF-κB, including the prominent role of protein phosphorylation and protein ubiquitylation, before briefly introducing the key features of feedback control mechanisms. We then describe the array of negative feedback loops targeting different components of the NF-κB signalling cascade including controls at the receptor level, post-receptor signalosome complexes, direct regulation of the critical 'inhibitor of κB kinases' (IKKs) and inhibitory feedforward regulation of NF-κB-dependent transcriptional responses. We also review post-transcriptional feedback controls affecting RNA stability and translation. Finally, we describe the deregulation of these feedback controls in human disease and consider how feedback may be a challenge to the efficacy of inhibitors.


Assuntos
Retroalimentação Fisiológica , Inflamação/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais , Animais , Sobrevivência Celular/genética , Regulação da Expressão Gênica , Humanos , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Inflamação/genética , Fosforilação , Estabilidade de RNA/genética
9.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33972441

RESUMO

Neuromodulation of immune function by stimulating the autonomic connections to the spleen has been demonstrated in rodent models. Consequently, neuroimmune modulation has been proposed as a new therapeutic strategy for the treatment of inflammatory conditions. However, demonstration of the translation of these immunomodulatory mechanisms in anatomically and physiologically relevant models is still lacking. Additionally, translational models are required to identify stimulation parameters that can be transferred to clinical applications of bioelectronic medicines. Here, we performed neuroanatomical and functional comparison of the mouse, rat, pig, and human splenic nerve using in vivo and ex vivo preparations. The pig was identified as a more suitable model of the human splenic innervation. Using functional electrophysiology, we developed a clinically relevant marker of splenic nerve engagement through stimulation-dependent reversible reduction in local blood flow. Translation of immunomodulatory mechanisms were then assessed using pig splenocytes and two models of acute inflammation in anesthetized pigs. The pig splenic nerve was shown to locally release noradrenaline upon stimulation, which was able to modulate cytokine production by pig splenocytes. Splenic nerve stimulation was found to promote cardiovascular protection as well as cytokine modulation in a high- and a low-dose lipopolysaccharide model, respectively. Importantly, splenic nerve-induced cytokine modulation was reproduced by stimulating the efferent trunk of the cervical vagus nerve. This work demonstrates that immune responses can be modulated by stimulation of spleen-targeted autonomic nerves in translational species and identifies splenic nerve stimulation parameters and biomarkers that are directly applicable to humans due to anatomical and electrophysiological similarities.


Assuntos
Sistema Imunitário/inervação , Imunomodulação/efeitos dos fármacos , Baço/imunologia , Sistema Nervoso Simpático/imunologia , Nervo Vago/imunologia , Animais , Feminino , Expressão Gênica , Humanos , Sistema Imunitário/efeitos dos fármacos , Inflamação , Interleucina-6/genética , Interleucina-6/imunologia , Lipopolissacarídeos/farmacologia , Camundongos , Microcirculação/efeitos dos fármacos , Microcirculação/genética , Microcirculação/imunologia , Norepinefrina/farmacologia , Ratos , Especificidade da Espécie , Baço/efeitos dos fármacos , Baço/inervação , Baço/patologia , Suínos , Sistema Nervoso Simpático/efeitos dos fármacos , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia , Nervo Vago/efeitos dos fármacos , Estimulação do Nervo Vago/métodos
10.
J Feline Med Surg ; 23(10): 883-891, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33404281

RESUMO

OBJECTIVES: The aim of this study was to describe the clinicopathological findings, management and outcome of cats with refeeding syndrome (RS) following prolonged starvation. METHODS: Records from four referral hospitals were searched between May 2013 and November 2019 and retrospectively evaluated. Inclusion criteria were the presence of a risk factor for RS, such as severe weight loss or emaciation following a period of presumed starvation, hypophosphataemia or a delta phosphorous exceeding 30% reduction following refeeding, being treated on the basis of a clinical diagnosis of RS and one or more derangement of hypokalaemia, hypoglycaemia or hyperglycaemia. RESULTS: Eleven cats were identified, which had been missing for a median of 6 weeks (range 3-104 weeks). Mean ± SD percentage weight loss was 46% ± 7% (n = 8). Eight of 11 cats developed hypophosphataemia with a mean delta phosphorous of -47% ± 9%. All cats were documented to be hypokalaemic. During hospitalisation, 10/11 cats developed hyperglycaemia and 7/11 cats developed hypoglycaemia. Cardiovascular, gastrointestinal and neurological signs were common. Eight of 11 cats displayed new or progressive neurological deficits after refeeding, including mentation changes and cerebellar dysfunction. All cats became anaemic and seven cats required a blood transfusion. Eight cats survived to discharge after a mean of 14 ± 4 days of hospitalisation. Six cats developed acute kidney injury (AKI; International Renal Interest Society stage 1). The presence of AKI (P = 0.024) was associated with non-survival and maximum bilirubin concentration was significantly higher in non-survivors (P = 0.018). CONCLUSIONS AND RELEVANCE: Cats with RS in this cohort had been missing, presumed starved, for more than 3 weeks. In addition to hypophosphataemia and hypokalaemia, altered glucose homeostasis and organ damage involving the liver and kidneys were common. Cats with RS appear to have a good prognosis, but prolonged intensive care is required.


Assuntos
Injúria Renal Aguda , Doenças do Gato , Hipofosfatemia , Síndrome da Realimentação , Injúria Renal Aguda/veterinária , Animais , Doenças do Gato/etiologia , Doenças do Gato/terapia , Gatos , Hipofosfatemia/etiologia , Hipofosfatemia/veterinária , Rim , Síndrome da Realimentação/etiologia , Síndrome da Realimentação/veterinária , Estudos Retrospectivos
11.
Biochem Soc Trans ; 49(1): 237-251, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33367512

RESUMO

The RAS-regulated RAF-MEK1/2-ERK1/2 pathway promotes cell proliferation and survival and RAS and BRAF proteins are commonly mutated in cancer. This has fuelled the development of small molecule kinase inhibitors including ATP-competitive RAF inhibitors. Type I and type I½ ATP-competitive RAF inhibitors are effective in BRAFV600E/K-mutant cancer cells. However, in RAS-mutant cells these compounds instead promote RAS-dependent dimerisation and paradoxical activation of wild-type RAF proteins. RAF dimerisation is mediated by two key regions within each RAF protein; the RKTR motif of the αC-helix and the NtA-region of the dimer partner. Dimer formation requires the adoption of a closed, active kinase conformation which can be induced by RAS-dependent activation of RAF or by the binding of type I and I½ RAF inhibitors. Binding of type I or I½ RAF inhibitors to one dimer partner reduces the binding affinity of the other, thereby leaving a single dimer partner uninhibited and able to activate MEK. To overcome this paradox two classes of drug are currently under development; type II pan-RAF inhibitors that induce RAF dimer formation but bind both dimer partners thus allowing effective inhibition of both wild-type RAF dimer partners and monomeric active class I mutant RAF, and the recently developed "paradox breakers" which interrupt BRAF dimerisation through disruption of the αC-helix. Here we review the regulation of RAF proteins, including RAF dimers, and the progress towards effective targeting of the wild-type RAF proteins.


Assuntos
Inibidores de Proteínas Quinases/farmacologia , Quinases raf/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos , Multimerização Proteica/fisiologia , Estrutura Secundária de Proteína/efeitos dos fármacos , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/fisiologia , Quinases raf/química , Quinases raf/metabolismo
12.
Trends Cell Biol ; 31(2): 95-107, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33272830

RESUMO

Autophagy and cap-dependent mRNA translation are tightly regulated by the mechanistic target of rapamycin complex 1 (mTORC1) signalling complex in response to nutrient availability. However, the regulation of these processes, and mTORC1 itself, is different during mitosis, and this has remained an area of significant controversy; for example, studies have argued that autophagy is either repressed or highly active during mitosis. Recent studies have shown that autophagy initiation is repressed, and cap-dependent mRNA translation is maintained during mitosis despite mTORC1 activity being repressed. This is achieved in large part by a switch from mTORC1- to cyclin-dependent kinase 1 (CDK1)-mediated regulation. Here, we review the history and recent advances and seek to present a unifying model to inform the future study of autophagy and mTORC1 during mitosis.


Assuntos
Autofagia/fisiologia , Proteína Quinase CDC2/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Mitose/fisiologia , Linhagem Celular , Linhagem Celular Tumoral , Humanos , Fosforilação/fisiologia , Biossíntese de Proteínas , Transdução de Sinais/fisiologia
13.
J Vet Emerg Crit Care (San Antonio) ; 31(1): 11-17, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33274832

RESUMO

OBJECTIVE: To compare the safety and efficacy of pericardial catheter placement with needle pericardiocentesis in dogs with pericardial effusion (PE) DESIGN: Prospective, randomized clinical trial. SETTING: University teaching hospital. ANIMALS: Thirty client-owned dogs requiring pericardiocentesis between January 2017 and August 2019. INTERVENTIONS: Dogs were randomized to undergo PE drainage via indwelling pericardial catheter placement (catheter group) followed by elective drainage every 4-6 hours or needle pericardiocentesis (needle group) repeated as necessary. MEASUREMENTS AND MAIN RESULTS: Fifteen dogs were allocated to the catheter group and 15 to the needle group. Data collected included signalment, cause of effusion, occurrence of arrhythmias pre-, during, and post-pericardiocentesis, procedural length, and details of repeated drainages. There was no significant difference between mean procedural times for pericardial catheter placement (17.7 min [±11.8]) and needle pericardiocentesis (12.1 min [±8.6]) (P = 0.192) or the rate of new arrhythmias in the catheter (36%) and needle (64%) groups (P = 0.24). Pericardial catheters were kept in situ for a median of 21 hours (range, 14-85). Three of 15 (20%) dogs in the needle group required repeated pericardiocentesis within 24 hours of initial pericardiocentesis. Pericardial catheters enabled repeated large volume PE drainage in 4 cases (median, 10.6 mL/kg; range, 8-5-10.6). CONCLUSIONS: Pericardial catheters appear to offer a safe alternative to needle pericardiocentesis. Minimal sedation is required for placement, and they can be placed quickly. Their indwelling nature and use was not associated with a higher rate of arrhythmia compared to that of needle pericardiocentesis alone, and may be beneficial in the event that clinically significant PE recurs.


Assuntos
Doenças do Cão/cirurgia , Derrame Pericárdico/veterinária , Pericardiocentese/veterinária , Animais , Cateterismo/veterinária , Cães , Feminino , Hospitais Universitários , Masculino , Agulhas/veterinária , Derrame Pericárdico/cirurgia , Pericardiocentese/instrumentação , Estudos Prospectivos
14.
Biochem Soc Trans ; 48(5): 1859-1875, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-32915196

RESUMO

ERK5 is a protein kinase that also contains a nuclear localisation signal and a transcriptional transactivation domain. Inhibition of ERK5 has therapeutic potential in cancer and inflammation and this has prompted the development of ERK5 kinase inhibitors (ERK5i). However, few ERK5i programmes have taken account of the ERK5 transactivation domain. We have recently shown that the binding of small molecule ERK5i to the ERK5 kinase domain stimulates nuclear localisation and paradoxical activation of its transactivation domain. Other kinase inhibitors paradoxically activate their intended kinase target, in some cases leading to severe physiological consequences highlighting the importance of mitigating these effects. Here, we review the assays used to monitor ERK5 activities (kinase and transcriptional) in cells, the challenges faced in development of small molecule inhibitors to the ERK5 pathway, and classify the molecular mechanisms of paradoxical activation of protein kinases by kinase inhibitors.


Assuntos
Inibidores Enzimáticos/farmacologia , Regulação Enzimológica da Expressão Gênica , Proteína Quinase 7 Ativada por Mitógeno/antagonistas & inibidores , Difosfato de Adenosina/química , Trifosfato de Adenosina/química , Animais , Núcleo Celular/metabolismo , Glutationa/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Humanos , Inflamação , Fatores de Transcrição MEF2/metabolismo , Modelos Moleculares , Fosforilação , Conformação Proteica , Domínios Proteicos , Fator de Transcrição AP-1/metabolismo , Ativação Transcricional
15.
J Vet Intern Med ; 34(5): 2086-2090, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32592436

RESUMO

A 3-month-old male intact Shiba Inu dog was evaluated for a seizure disorder initially deemed idiopathic in origin. Seizure frequency remained unchanged despite therapeutic serum phenobarbital concentration and use of levetiracetam. The dog was documented to be markedly hypoglycemic during a seizure episode on reevaluation at 6 months of age. Serum insulin concentrations during hypoglycemia were 41 U/µL (reference range, 10-29 U/µL). The dog was transitioned to 4 times per day feeding, diazoxide was started at 3.5 mg/kg PO q8h, and antiepileptic drugs were discontinued. No clinically relevant abnormalities were identified on bicavitary arterial and venous phase contrast computed tomographic imaging. The dog remained seizure-free and clinically normal at 3 years of age while receiving 5.5 mg/kg diazoxide PO q12h and twice daily feeding. Seizures later occurred approximately twice per year and after exertion, with or without vomiting of a diazoxide dose. Blood glucose curves and interstitial glucose monitoring were used to titrate diazoxide dose and dosing interval. Congenital hyperinsulinism is well recognized in people but has not been reported in veterinary medicine.


Assuntos
Hiperinsulinismo Congênito , Doenças do Cão , Hiperinsulinismo , Animais , Glicemia , Automonitorização da Glicemia/veterinária , Hiperinsulinismo Congênito/tratamento farmacológico , Hiperinsulinismo Congênito/veterinária , Doenças do Cão/diagnóstico por imagem , Doenças do Cão/tratamento farmacológico , Cães , Hiperinsulinismo/tratamento farmacológico , Hiperinsulinismo/veterinária , Masculino , Convulsões/tratamento farmacológico , Convulsões/veterinária , Tomografia Computadorizada por Raios X
16.
Nat Commun ; 11(1): 1383, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32170057

RESUMO

The dual protein kinase-transcription factor, ERK5, is an emerging drug target in cancer and inflammation, and small-molecule ERK5 kinase inhibitors have been developed. However, selective ERK5 kinase inhibitors fail to recapitulate ERK5 genetic ablation phenotypes, suggesting kinase-independent functions for ERK5. Here we show that ERK5 kinase inhibitors cause paradoxical activation of ERK5 transcriptional activity mediated through its unique C-terminal transcriptional activation domain (TAD). Using the ERK5 kinase inhibitor, Compound 26 (ERK5-IN-1), as a paradigm, we have developed kinase-active, drug-resistant mutants of ERK5. With these mutants, we show that induction of ERK5 transcriptional activity requires direct binding of the inhibitor to the kinase domain. This in turn promotes conformational changes in the kinase domain that result in nuclear translocation of ERK5 and stimulation of gene transcription. This shows that both the ERK5 kinase and TAD must be considered when assessing the role of ERK5 and the effectiveness of anti-ERK5 therapeutics.


Assuntos
Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Inibidores de Proteínas Quinases/metabolismo , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Inflamação/metabolismo , Proteína Quinase 7 Ativada por Mitógeno/genética , Modelos Moleculares , Mutação , Conformação Proteica , Domínios Proteicos , Inibidores de Proteínas Quinases/farmacologia , Transcrição Gênica
17.
Mol Cell ; 77(2): 228-240.e7, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31733992

RESUMO

Since nuclear envelope breakdown occurs during mitosis in metazoan cells, it has been proposed that macroautophagy must be inhibited to maintain genome integrity. However, repression of macroautophagy during mitosis remains controversial and mechanistic detail limited to the suggestion that CDK1 phosphorylates VPS34. Here, we show that initiation of macroautophagy, measured by the translocation of the ULK complex to autophagic puncta, is repressed during mitosis, even when mTORC1 is inhibited. Indeed, mTORC1 is inactive during mitosis, reflecting its failure to localize to lysosomes due to CDK1-dependent RAPTOR phosphorylation. While mTORC1 normally represses autophagy via phosphorylation of ULK1, ATG13, ATG14, and TFEB, we show that the mitotic phosphorylation of these autophagy regulators, including at known repressive sites, is dependent on CDK1 but independent of mTOR. Thus, CDK1 substitutes for inhibited mTORC1 as the master regulator of macroautophagy during mitosis, uncoupling autophagy regulation from nutrient status to ensure repression of macroautophagy during mitosis.


Assuntos
Autofagia/fisiologia , Proteína Quinase CDC2/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Mitose/fisiologia , Células A549 , Linhagem Celular , Linhagem Celular Tumoral , Feminino , Células HCT116 , Células HEK293 , Células HT29 , Células HeLa , Humanos , Lisossomos/metabolismo , Masculino , Fosforilação/fisiologia , Transdução de Sinais/fisiologia
18.
Mol Cancer Ther ; 19(2): 525-539, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31748345

RESUMO

The RAS-regulated RAF-MEK1/2-ERK1/2 signaling pathway is frequently deregulated in cancer due to activating mutations of growth factor receptors, RAS or BRAF. Both RAF and MEK1/2 inhibitors are clinically approved and various ERK1/2 inhibitors (ERKi) are currently undergoing clinical trials. To date, ERKi display two distinct mechanisms of action (MoA): catalytic ERKi solely inhibit ERK1/2 catalytic activity, whereas dual mechanism ERKi additionally prevents the activating phosphorylation of ERK1/2 at its T-E-Y motif by MEK1/2. These differences may impart significant differences in biological activity because T-E-Y phosphorylation is the signal for nuclear entry of ERK1/2, allowing them to access many key transcription factor targets. Here, we characterized the MoA of five ERKi and examined their functional consequences in terms of ERK1/2 signaling, gene expression, and antiproliferative efficacy. We demonstrate that catalytic ERKi promote a striking nuclear accumulation of p-ERK1/2 in KRAS-mutant cell lines. In contrast, dual-mechanism ERKi exploits a distinct binding mode to block ERK1/2 phosphorylation by MEK1/2, exhibit superior potency, and prevent the nuclear accumulation of ERK1/2. Consequently, dual-mechanism ERKi exhibit more durable pathway inhibition and enhanced suppression of ERK1/2-dependent gene expression compared with catalytic ERKi, resulting in increased efficacy across BRAF- and RAS-mutant cell lines.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/análise , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Animais , Humanos , Masculino , Camundongos , Camundongos Nus , Fosforilação
19.
Nat Commun ; 10(1): 5167, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31727888

RESUMO

BRAF and MEK1/2 inhibitors are effective in melanoma but resistance inevitably develops. Despite increasing the abundance of pro-apoptotic BIM and BMF, ERK1/2 pathway inhibition is predominantly cytostatic, reflecting residual pro-survival BCL2 family activity. Here, we show that uniquely low BCL-XL expression in melanoma biases the pro-survival pool towards MCL1. Consequently, BRAF or MEK1/2 inhibitors are synthetic lethal with the MCL1 inhibitor AZD5991, driving profound tumour cell death that requires BAK/BAX, BIM and BMF, and inhibiting tumour growth in vivo. Combination of ERK1/2 pathway inhibitors with BCL2/BCL-w/BCL-XL inhibitors is stronger in CRC, correlating with a low MCL1:BCL-XL ratio; indeed the MCL1:BCL-XL ratio is predictive of ERK1/2 pathway inhibitor synergy with MCL1 or BCL2/BCL-w/BCL-XL inhibitors. Finally, AZD5991 delays acquired BRAFi/MEKi resistance and enhances the efficacy of an ERK1/2 inhibitor in a model of acquired BRAFi + MEKi resistance. Thus combining ERK1/2 pathway inhibitors with MCL1 antagonists in melanoma could improve therapeutic index and patient outcomes.


Assuntos
Apoptose , Sistema de Sinalização das MAP Quinases , Melanoma/patologia , Terapia de Alvo Molecular , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Compostos Macrocíclicos/farmacologia , Camundongos , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteína bcl-X/metabolismo
20.
Eur J Med Chem ; 178: 530-543, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31212132

RESUMO

Extracellular regulated kinase 5 (ERK5) signalling has been implicated in driving a number of cellular phenotypes including endothelial cell angiogenesis and tumour cell motility. Novel ERK5 inhibitors were identified using high throughput screening, with a series of pyrrole-2-carboxamides substituted at the 4-position with an aroyl group being found to exhibit IC50 values in the micromolar range, but having no selectivity against p38α MAP kinase. Truncation of the N-substituent marginally enhanced potency (∼3-fold) against ERK5, but importantly attenuated inhibition of p38α. Systematic variation of the substituents on the aroyl group led to the selective inhibitor 4-(2-bromo-6-fluorobenzoyl)-N-(pyridin-3-yl)-1H-pyrrole-2-carboxamide (IC50 0.82 µM for ERK5; IC50 > 120 µM for p38α). The crystal structure (PDB 5O7I) of this compound in complex with ERK5 has been solved. This compound was orally bioavailable and inhibited bFGF-driven Matrigel plug angiogenesis and tumour xenograft growth. The selective ERK5 inhibitor described herein provides a lead for further development into a tool compound for more extensive studies seeking to examine the role of ERK5 signalling in cancer and other diseases.


Assuntos
Antineoplásicos/farmacologia , Proteína Quinase 14 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 7 Ativada por Mitógeno/antagonistas & inibidores , Proteínas Nucleares/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Fatores de Transcrição/antagonistas & inibidores , Administração Oral , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Disponibilidade Biológica , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Camundongos , Camundongos Nus , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Proteínas Nucleares/metabolismo , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA