Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Mol Nutr Food Res ; 68(4): e2300239, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38212250

RESUMO

SCOPE: Tomato consumption is associated with many health benefits including lowered risk for developing certain cancers. It is hypothesized that tomato phytochemicals are transported to the liver and other tissues where they alter gene expression in ways that lead to favorable health outcomes. However, the effects of tomato consumption on mammalian liver gene expression and chemical profile are not well defined. METHODS AND RESULTS: The study hypothesizes that tomato consumption would alter mouse liver transcriptomes and metabolomes compared to a control diet. C57BL/6J mice (n = 11-12/group) are fed a macronutrient matched diet containing either 10% red tomato, 10% tangerine tomato, or no tomato powder for 6 weeks after weaning. RNA-Seq followed by gene set enrichment analyses indicates that tomato type and consumption, in general, altered expression of phase I and II xenobiotic metabolism genes. Untargeted metabolomics experiments reveal distinct clustering between control and tomato fed animals. Nineteen molecular formulas (representing 75 chemical features) are identified or tentatively identified as steroidal alkaloids and isomers of their phase I and II metabolites; many of which are reported for the first time in mammals. CONCLUSION: These data together suggest tomato consumption may impart benefits partly through enhancing detoxification potential.


Assuntos
Alcaloides , Solanum lycopersicum , Camundongos , Animais , Xenobióticos/metabolismo , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Metabolômica/métodos , Perfilação da Expressão Gênica , Alcaloides/farmacologia , Esteroides/metabolismo , Mamíferos
2.
Metabolites ; 9(7)2019 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-31336728

RESUMO

Oral cancer is a public health problem with an incidence of almost 50,000 and a mortality of 10,000 each year in the USA alone. Black raspberries (BRBs) have been shown to inhibit oral carcinogenesis in several preclinical models, but our understanding of how BRB phytochemicals affect the metabolic pathways during oral carcinogenesis remains incomplete. We used a well-established rat oral cancer model to determine potential metabolic pathways impacted by BRBs during oral carcinogenesis. F344 rats were exposed to the oral carcinogen 4-nitroquinoline-1-oxide in drinking water for 14 weeks, then regular drinking water for six weeks. Carcinogen exposed rats were fed a 5% or 10% BRB supplemented diet or control diet for six weeks after carcinogen exposure. RNA-Seq transcriptome analysis on rat tongue, and mass spectrometry and NMR metabolomics analysis on rat urine were performed. We tentatively identified 57 differentially or uniquely expressed metabolites and over 662 modulated genes in rats being fed with BRB. Glycolysis and AMPK pathways were modulated during BRB-mediated oral cancer chemoprevention. Glycolytic enzymes Aldoa, Hk2, Tpi1, Pgam2, Pfkl, and Pkm2 as well as the PKA-AMPK pathway genes Prkaa2, Pde4a, Pde10a, Ywhag, and Crebbp were downregulated by BRBs during oral cancer chemoprevention. Furthermore, the glycolysis metabolite glucose-6-phosphate decreased in BRB-administered rats. Our data reveal the novel metabolic pathways modulated by BRB phytochemicals that can be targeted during the chemoprevention of oral cancer.

3.
Food Funct ; 9(9): 4593-4601, 2018 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-30022172

RESUMO

Pre-clinical and clinical studies suggest black raspberries (BRBs) may inhibit the development of oral cancer. Lyophilized BRB powder is commonly used in these studies, but processed BRB products are more often consumed. The objective of this work was to understand how storage conditions influence the phytochemical profile and anti-proliferative activity of a BRB nectar beverage. Untargeted UHPLC-Q-TOF-MS based metabolomics analyses demonstrated that large chemical variation was introduced by storage above -20 °C over 60 days. However, minimal change in anti-proliferative activity was observed when stored nectar extracts were applied to SCC-83-01-82 premalignant oral epithelial cells. As proof of concept, cyanidin-3-O-rutinoside and its degradation product, protocatechuic acid, were administered in different ratios maintaining an equimolar dose, and anti-proliferative activity was maintained. This study shows the utility of metabolomics to profile global chemical changes in foods, while demonstrating that isolated phytochemicals do not explain the complete bioactivity of a complex food product.


Assuntos
Extratos Vegetais/química , Néctar de Plantas/química , Rubus/química , Cromatografia Líquida de Alta Pressão , Armazenamento de Alimentos , Sucos de Frutas e Vegetais/análise , Espectrometria de Massas , Metabolômica , Extratos Vegetais/metabolismo , Néctar de Plantas/metabolismo , Rubus/metabolismo
4.
Sci Rep ; 7(1): 5106, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28698610

RESUMO

Prolonged tomato consumption can mitigate ultraviolet (UV) light induced sunburn via unknown mechanisms. Dietary carotenoids distributed to skin are hypothesized to protect skin against UV-induced damage, although other phytochemicals may play a role. We hypothesize that tomato consumption would protect against skin cancer. SKH-1 hairless and immunocompetent mice (n = 180) were fed AIN-93G or AIN-93G + 10% tangerine or red tomato powder for 35 weeks. From weeks 11-20, mice (n = 120) were exposed to 2240 J/m2 UV-B light, 3x/week, and tumors were tracked weekly. Control mice were fed the same diets but not exposed to UV. Tumor number was significantly lower in male mice consuming red tomato diets (1.73 ± 0.50, P = 0.015) or pooled tomato diets (2.03 ± 0.45, P = 0.017) compared to controls (4.04 ± 0.65). Carotenoid levels in plasma and skin were quantitated, with total lycopene higher in skin of tangerine fed animals despite a lower dose. Metabolomic analyses elucidated compounds derived from tomato glycoalkaloids (including tomatidine and hydroxylated-tomatidine) as significantly different metabolites in skin after tomato exposure. Here, we describe that tomato consumption can modulate risk for keratinocyte carcinomas; however, the role of the newly identified specific phytochemicals possibly responsible for this action require further investigation.


Assuntos
Produtos Biológicos/administração & dosagem , Metabolômica/métodos , Neoplasias Cutâneas/prevenção & controle , Solanum lycopersicum/química , Raios Ultravioleta/efeitos adversos , Animais , Produtos Biológicos/farmacocinética , Carotenoides/sangue , Cromatografia Líquida de Alta Pressão , Modelos Animais de Doenças , Licopeno/sangue , Masculino , Camundongos , Extratos Vegetais/administração & dosagem , Extratos Vegetais/uso terapêutico , Neoplasias Cutâneas/sangue , Neoplasias Cutâneas/etiologia , Neoplasias Cutâneas/metabolismo , Espectrometria de Massas em Tandem
5.
Mol Nutr Food Res ; 61(10)2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28589636

RESUMO

SCOPE: UV exposure is a risk factor for keratinocyte carcinoma (KC) while critical for endogenous vitamin D production. We investigated dietary modulation of skin and serum 25-hydroxyvitamin D3 (25OHD3 ) and its C-3 epimer (C3epi) in a mouse model of KC. C3epi is an under-investigated metabolite of vitamin D with respect to its biological implications. METHODS AND RESULTS: Male and female Skh-1 mice were supplemented with 25, 150 or 1000 IU/kg diet vitamin D3 for 25 weeks, with some exposed to UV light. Skin and serum vitamin D metabolites were quantitated using HPLC-MS/MS (n = 3 per dose/sex/UV treatment). Serum and skin 25OHD3 and C3epi significantly increased with dose (P<0.0001), but with different response patterns. UV exposure significantly attenuated serum, but not skin, levels of both metabolites (P<0.001, P = 0.0287), while up-regulating expression of renal Cyp24a1 (P < 0.01). A dose by sex interaction trended toward significance with serum and skin levels of C3epi, wherein male mice attained higher levels of C3epi with higher dietary vitamin D3 . This reflected a similar, but non-significant pattern in average tumor size. CONCLUSION: The complex relationship between vitamin D and KC requires further investigation. This study provides insight into modulation of local and systemic vitamin D status with dietary supplementation.


Assuntos
Colecalciferol/administração & dosagem , Colecalciferol/sangue , Dieta , Pele/química , Animais , Suplementos Nutricionais , Relação Dose-Resposta a Droga , Feminino , Masculino , Camundongos , Espectrometria de Massas em Tandem , Raios Ultravioleta/efeitos adversos , Regulação para Cima , Vitamina D3 24-Hidroxilase/genética , Vitamina D3 24-Hidroxilase/metabolismo
6.
Cancer Prev Res (Phila) ; 10(2): 161-169, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27807077

RESUMO

The hypothesis that dietary tomato consumption or the intake of the carotenoid lycopene inhibits prostate cancer arose from epidemiologic studies and is supported by preclinical rodent experiments and in vitro mechanistic studies. We hypothesize that variation in activity of carotenoid cleavage enzymes, such as ß-carotene 9',10'-oxygenase (BCO2), may alter the impact of dietary tomato and lycopene on prostate carcinogenesis and therefore examined this relationship in the TRAMP model. Starting at 3 weeks of age, TRAMP:Bco2+/+ and TRAMP:Bco2-/- mice were fed either AIN-93G control, or semipurified diets containing 10% tomato powder or 0.25% lycopene beadlets until 18 weeks of age. Both tomato- and lycopene-fed TRAMP:Bco2-/- mice had significantly greater serum concentrations of total, 5-cis, other cis, and all-trans lycopene than TRAMP:Bco2+/+ mice. Tomato- and lycopene-fed mice had a lower incidence of prostate cancer compared with the control-fed mice. Although Bco2 genotype alone did not significantly change prostate cancer outcome in the control AIN-93G-fed mice, the abilities of lycopene and tomato feeding to inhibit prostate carcinogenesis were significantly attenuated by the loss of Bco2 (Pinteraction = 0.0004 and 0.0383, respectively). Overall, dietary tomato and lycopene inhibited the progression of prostate cancer in TRAMP in a Bco2 genotype-specific manner, potentially implicating the anticancer activity of lycopene cleavage products. This study suggests that genetic variables impacting carotenoid metabolism and accumulation can impact anticancer activity and that future efforts devoted to understanding the interface between tomato carotenoid intake, host genetics, and metabolism will be necessary to clearly elucidate their interactive roles in human prostate carcinogenesis. Cancer Prev Res; 10(2); 161-9. ©2016 AACR.


Assuntos
Anticarcinógenos/farmacologia , Carcinogênese/efeitos dos fármacos , Carotenoides/farmacologia , Dioxigenases/metabolismo , Neoplasias da Próstata/enzimologia , Solanum lycopersicum , Animais , Dieta , Licopeno , Masculino , Camundongos , Camundongos Knockout , Neoplasias da Próstata/patologia
7.
Mol Nutr Food Res ; 59(4): 763-72, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25641956

RESUMO

SCOPE: High incidence of inflammatory diseases afflicts the increasing aging-population infringing a great health burden. Dietary flavonoids, including the flavone apigenin, are emerging as important anti-inflammatory nutraceuticals due to their health benefits, lack of adverse effects and reduced costs. MicroRNAs (miRs) play a central role in inflammation by regulating gene expression, yet how dietary ingredients affect miRs is poorly understood. The aim of this study was to identify miRs involved in the anti-inflammatory activity of apigenin and apigenin-rich diets and determine their immune regulatory mechanisms in macrophages and in vivo. METHODS AND RESULTS: A high-throughput quantitative reverse transcriptase PCR screen of 312 miRs in macrophages revealed that apigenin reduced LPS-induced miR-155 expression. Analyses of miR-155 precursor and primary transcript indicated that apigenin regulated miR-155 transcriptionally. Apigenin-reduced expression of miR-155 led to the increase of anti-inflammatory regulators forkhead box O3a and smooth-muscle-actin and MAD-related protein 2 in LPS-treated macrophages. In vivo, apigenin or a celery-based apigenin-rich diet reduced LPS-induced expression of miR-155 and decreased tumor necrosis factor α in lungs from LPS-treated mice. CONCLUSION: These results demonstrate that apigenin and apigenin-rich diets exert effective anti-inflammatory activity in vivo by reducing LPS-induced expression of miR-155, thereby restoring immune balance.


Assuntos
Anti-Inflamatórios/farmacologia , Apigenina/farmacologia , Inflamação/tratamento farmacológico , MicroRNAs/metabolismo , Animais , Apium/química , Linhagem Celular Tumoral , Dieta , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Lipopolissacarídeos/efeitos adversos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA