Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; : e0345822, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36877047

RESUMO

The gut microbiota-brain axis is suspected to contribute to the development of Alzheimer's disease (AD), a neurodegenerative disease characterized by amyloid-ß plaque deposition, neurofibrillary tangles, and neuroinflammation. To evaluate the role of the gut microbiota-brain axis in AD, we characterized the gut microbiota of female 3xTg-AD mice modeling amyloidosis and tauopathy and wild-type (WT) genetic controls. Fecal samples were collected fortnightly from 4 to 52 weeks, and the V4 region of the 16S rRNA gene was amplified and sequenced on an Illumina MiSeq. RNA was extracted from the colon and hippocampus, converted to cDNA, and used to measure immune gene expression using reverse transcriptase quantitative PCR (RT-qPCR). Diversity metrics were calculated using QIIME2, and a random forest classifier was applied to predict bacterial features that are important in predicting mouse genotype. Gene expression of glial fibrillary acidic protein (GFAP; indicating astrocytosis) was elevated in the colon at 24 weeks. Markers of Th1 inflammation (il6) and microgliosis (mrc1) were elevated in the hippocampus. Gut microbiota were compositionally distinct early in life between 3xTg-AD mice and WT mice (permutational multivariate analysis of variance [PERMANOVA], 8 weeks, P = 0.001, 24 weeks, P = 0.039, and 52 weeks, P = 0.058). Mouse genotypes were correctly predicted 90 to 100% of the time using fecal microbiome composition. Finally, we show that the relative abundance of Bacteroides species increased over time in 3xTg-AD mice. Taken together, we demonstrate that changes in bacterial gut microbiota composition at prepathology time points are predictive of the development of AD pathologies. IMPORTANCE Recent studies have demonstrated alterations in the gut microbiota composition in mice modeling Alzheimer's disease (AD) pathologies; however, these studies have only included up to 4 time points. Our study is the first of its kind to characterize the gut microbiota of a transgenic AD mouse model, fortnightly, from 4 weeks of age to 52 weeks of age, to quantify the temporal dynamics in the microbial composition that correlate with the development of disease pathologies and host immune gene expression. In this study, we observed temporal changes in the relative abundances of specific microbial taxa, including the genus Bacteroides, that may play a central role in disease progression and the severity of pathologies. The ability to use features of the microbiota to discriminate between mice modeling AD and wild-type mice at prepathology time points indicates a potential role of the gut microbiota as a risk or protective factor in AD.

2.
J Allergy Clin Immunol ; 151(5): 1277-1285, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36736797

RESUMO

BACKGROUND: Epithelial remodeling is a histopathologic feature of chronic inflammatory airway diseases including chronic rhinosinusitis (CRS). Cell-type shifts and their relationship to CRS endotypes and severity are incompletely described. OBJECTIVE: We sought to understand the relationship of epithelial cell remodeling to inflammatory endotypes and disease outcomes in CRS. METHODS: Using cell-type transcriptional signatures derived from epithelial single-cell sequencing, we analyzed bulk RNA-sequencing data from sinus epithelial brushings obtained from patients with CRS with and without nasal polyps in comparison to healthy controls. RESULTS: The airway epithelium in nasal polyposis displayed increased tuft cell transcripts and decreased ciliated cell transcripts along with an IL-13 activation signature. In contrast, CRS without polyps showed an IL-17 activation signature. IL-13 activation scores were associated with increased tuft cell, goblet cell, and mast cell scores and decreased ciliated cell scores. Furthermore, the IL-13 score was strongly associated with a previously reported activated ("polyp") tuft cell score and a prostaglandin E2 activation signature. The Lund-Mackay score, a computed tomographic metric of sinus opacification, correlated positively with activated tuft cell, mast cell, prostaglandin E2, and IL-13 signatures and negatively with ciliated cell transcriptional signatures. CONCLUSIONS: These results demonstrate that cell-type alterations and prostaglandin E2 stimulation are key components of IL-13-induced epithelial remodeling in nasal polyposis, whereas IL-17 signaling is more prominent in CRS without polyps, and that clinical severity correlates with the degree of IL-13-driven epithelial remodeling.


Assuntos
Pólipos Nasais , Rinite , Sinusite , Humanos , Interleucina-13 , Pólipos Nasais/patologia , Rinite/patologia , Interleucina-17 , Dinoprostona , Sinusite/patologia , Doença Crônica , Mucosa Nasal/patologia
3.
Int Forum Allergy Rhinol ; 13(8): 1503-1510, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36504343

RESUMO

BACKGROUND: The role of microbes in chronic rhinosinusitis (CRS) is poorly understood. We hypothesize that analyzing prior microbial exposures via assessing microbial protein serological reactivity in CRS versus controls may offer insights for CRS etiopathogenesis. METHODS: We profiled IgG and IgA antibodies to individual microbial proteins in serum samples of CRS patients and controls using a novel high-throughput microarray protein technology, Nucleic Acid Programmable Protein Array (NAPPA). The study was conducted on 118 subjects (39 CRS, 79 controls). A CRS-focused NAPPA array, with 1557 potentially sero-reactive microbial proteins elected from a pre-screening of 6500 genes of interest was constructed. It included membrane-associated proteins from 47 bacterial species and all proteins from 43 viral strains. Differences between CRS and controls were compared across individual antimicrobial antibodies and the species. RESULTS: Chronic rhinosinusitis patients had significantly elevated antimicrobial antibodies compared with controls. One bacterium (Staphylococcus aureus) and three viral strains (human metapneumovirus, human herpesvirus 5, and human herpesvirus 4) were identified as sources of the proteins that showed significantly elevated sero-reactivity in CRS patients. Within CRS, patients with polyps had elevated antibodies against S. aureus, influenza A virus (H1N1, H3N2), and rhinovirus B14. CRS patients without polyps showed more antibodies against human herpesvirus 1 and vaccinia virus WR. CONCLUSIONS: Compared with healthy controls, CRS patients' serum samples showed significantly increased sero-reactivity to both bacterial and viral proteins, reflecting recent or current infection or active colonization. Significantly higher antibodies against S. aureus, human metapneumovirus, human herpesvirus 5, and human herpesvirus 4 in CRS need further study.


Assuntos
Anti-Infecciosos , Vírus da Influenza A Subtipo H1N1 , Microbiota , Rinite , Sinusite , Humanos , Staphylococcus aureus , Formação de Anticorpos , Vírus da Influenza A Subtipo H3N2 , Doença Crônica
4.
JCI Insight ; 7(13)2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35608904

RESUMO

Chronic type 2 (T2) inflammatory diseases of the respiratory tract are characterized by mucus overproduction and disordered mucociliary function, which are largely attributed to the effects of IL-13 on common epithelial cell types (mucus secretory and ciliated cells). The role of rare cells in airway T2 inflammation is less clear, though tuft cells have been shown to be critical in the initiation of T2 immunity in the intestine. Using bulk and single-cell RNA sequencing of airway epithelium and mouse modeling, we found that IL-13 expanded and programmed airway tuft cells toward eicosanoid metabolism and that tuft cell deficiency led to a reduction in airway prostaglandin E2 (PGE2) concentration. Allergic airway epithelia bore a signature of PGE2 activation, and PGE2 activation led to cystic fibrosis transmembrane receptor-dependent ion and fluid secretion and accelerated mucociliary transport. These data reveal a role for tuft cells in regulating epithelial mucociliary function in the allergic airway.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Animais , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Dinoprostona , Interleucina-13/metabolismo , Camundongos , Sistema Respiratório
5.
Allergy ; 75(8): 2037-2049, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32167574

RESUMO

The sinonasal microbiome remains poorly defined, with our current knowledge based on a few cohort studies whose findings are inconsistent. Furthermore, the variability of the sinus microbiome across geographical divides remains unexplored. We characterize the sinonasal microbiome and its geographical variations in both health and disease using 16S rRNA gene sequencing of 410 individuals from across the world. Although the sinus microbial ecology is highly variable between individuals, we identify a core microbiome comprised of Corynebacterium, Staphylococcus, Streptococcus, Haemophilus and Moraxella species in both healthy and chronic rhinosinusitis (CRS) cohorts. Corynebacterium (mean relative abundance = 44.02%) and Staphylococcus (mean relative abundance = 27.34%) appear particularly dominant in the majority of patients sampled. Amongst patients suffering from CRS with nasal polyps, a statistically significant reduction in relative abundance of Corynebacterium (40.29% vs 50.43%; P = .02) was identified. Despite some measured differences in microbiome composition and diversity between some of the participating centres in our cohort, these differences would not alter the general pattern of core organisms described. Nevertheless, atypical or unusual organisms reported in short-read amplicon sequencing studies and that are not part of the core microbiome should be interpreted with caution. The delineation of the sinonasal microbiome and standardized methodology described within our study will enable further characterization and translational application of the sinus microbiota.


Assuntos
Microbiota , Seios Paranasais , Sinusite , Bactérias/genética , Doença Crônica , Humanos , RNA Ribossômico 16S/genética , Sinusite/epidemiologia
6.
Anaerobe ; 58: 53-72, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30946985

RESUMO

Clostridioides difficile infection (CDI) is an emerging public health threat and C. difficile is the most common cause of antimicrobial-associated diarrhea worldwide and the leading cause of hospital-associated infections in the US, yet the burden of community-acquired infections (CAI) is poorly understood. Characterizing C. difficile isolated from canines is important for understanding the role that canines may play in CAI. In addition, several studies have suggested that canines carry toxigenic C. difficile asymptomatically, which may imply that there are mechanisms responsible for resistance to CDI in canines that could be exploited to help combat human CDI. To assess the virulence potential of canine-derived C. difficile, we tested whether toxins TcdA and TcdB (hereafter toxins) derived from a canine isolate were capable of causing tight junction disruptions to colonic epithelial cells. Additionally, we addressed whether major differences exist between human and canine cells regarding C. difficile pathogenicity by exposing them to identical toxins. We then examined the canine gut microbiome associated with C. difficile carriage using 16S rRNA gene sequencing and searched for deviations from homeostasis as an indicator of CDI. Finally, we queried 16S rRNA gene sequences for bacterial taxa that may be associated with resistance to CDI in canines. Clostridioides difficile isolated from a canine produced toxins that reduced tight junction integrity in both human and canine cells in vitro. However, canine guts were not dysbiotic in the presence of C. difficile. These findings support asymptomatic carriage in canines and, furthermore, suggest that there are features of the gut microbiome and/or a canine-specific immune response that may protect canines against CDI. We identified two biologically relevant bacteria that may aid in CDI resistance in canines: 1) Clostridium hiranonis, which synthesizes secondary bile acids that have been shown to provide resistance to CDI in mice; and 2) Sphingobacterium faecium, which produces sphingophospholipids that may be associated with regulating homeostasis in the canine gut. Our findings suggest that canines may be cryptic reservoirs for C. difficile and, furthermore, that mechanisms of CDI resistance in the canine gut could provide insights into targeted therapeutics for human CDI.


Assuntos
Biota , Clostridioides difficile/crescimento & desenvolvimento , Infecções por Clostridium/veterinária , Doenças do Cão/microbiologia , Disbiose , Trato Gastrointestinal/microbiologia , Animais , Proteínas de Bactérias/toxicidade , Toxinas Bacterianas/toxicidade , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Clostridioides difficile/patogenicidade , Infecções por Clostridium/microbiologia , Cães , Enterotoxinas/toxicidade , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/microbiologia , Células Epiteliais/fisiologia , Humanos , Camundongos , Fosfolipídeos/análise , Junções Íntimas/efeitos dos fármacos
7.
Laryngoscope ; 129(3): 544-550, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30284279

RESUMO

OBJECTIVES/HYPOTHESIS: To determine the relationship between mucosal-associated sinus and bronchial microbiota in cystic fibrosis (CF) patients compared to non-CF patients with chronic rhinosinusitis (CRS). STUDY DESIGN: Case series. METHODS: We examined the microbial composition of 52 paired sinus and bronchial brushings from 26 patients with CRS. Paired airway samples from nine subjects with CF were compared with samples from 17 non-CF-CRS disease control patients. The Illumina MiSeq platform was used to sequence the V4 region of the 16S rRNA gene. Sequences were analyzed using QIIME 1.9.0. RESULTS: CF patients demonstrate increased severity of sinus inflammation (Lund-Mackay score 16.3 vs. 12.4, P = .023) and diminished diversity of microbial communities in both the sinuses (Shannon diversity 0.98 vs. 3.3, P = .009) and lungs (Shannon diversity 2.2 vs. 4.0, P = .042) relative to non-CF-CRS. Non-CF-CRS sinus and lung microbiota were distinct and clustered by niche (sinus vs. lung, P = .004). However, CF airway microbiota demonstrated a loss of niche specificity (sinus vs. lung, P = .492). Two CF patients underwent lung transplantation at 4.5 and 9 months prior to sampling. Sinus and lung samples from these two patients demonstrated distinct microbial communities. CONCLUSIONS: Patients with CF undergoing surgery for CRS exhibit substantial bacterial community collapse in the sinuses and a loss of niche specificity between the upper and lower airways compared to non-CF patients with CRS. These results extend previous studies elucidating the lower airway microbiome in cystic fibrosis and provide support for the concept of microbial translocation in the cystic fibrosis airways. LEVEL OF EVIDENCE: 4 Laryngoscope, 129:544-550, 2019.


Assuntos
Bactérias/isolamento & purificação , Brônquios/microbiologia , Fibrose Cística/microbiologia , Microbiota , Seios Paranasais/microbiologia , Rinite/microbiologia , Sinusite/microbiologia , Doença Crônica , Fibrose Cística/complicações , Humanos , Estudos Prospectivos , Rinite/complicações , Sinusite/complicações
8.
mSystems ; 3(2)2018.
Artigo em Inglês | MEDLINE | ID: mdl-29556535

RESUMO

Despite growing efforts to understand the role of the microbiota in airway disease, mechanisms that link microbial community dysbiosis to chronic inflammation remain elusive. Our laboratory is interested in how altered microbiota composition or function influences airway inflammatory diseases, including chronic rhinosinusitis, asthma, and cystic fibrosis. Given the tight interplay between host-associated microbes and host immunity, the potential for translational microbiome research to guide clinical decisions and novel therapeutics is becoming better appreciated. We hope to advance our understanding of the ecology of airway disease through integrating multiple omics assays and in vitro and in vivo experimental validation. An increased understanding of the role of the microbiota in chronic airway inflammation will ultimately lead to the rational development of therapeutics aimed at manipulation of microbiota composition or activity to treat these important and costly diseases. In this perspective, I discuss our current research investigating the microbiology and ecology of the airway microbiome.

9.
Microbiome ; 5(1): 53, 2017 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-28494786

RESUMO

BACKGROUND: Chronic rhinosinusitis (CRS) is a heterogeneous disease characterized by persistent sinonasal inflammation and sinus microbiome dysbiosis. The basis of this heterogeneity is poorly understood. We sought to address the hypothesis that a limited number of compositionally distinct pathogenic bacterial microbiota exist in CRS patients and invoke discrete immune responses and clinical phenotypes in CRS patients. RESULTS: Sinus brushings from patients with CRS (n = 59) and healthy individuals (n = 10) collected during endoscopic sinus surgery were analyzed using 16S rRNA gene sequencing, predicted metagenomics, and RNA profiling of the mucosal immune response. We show that CRS patients cluster into distinct sub-groups (DSI-III), each defined by specific pattern of bacterial co-colonization (permutational multivariate analysis of variance (PERMANOVA); p = 0.001, r 2 = 0.318). Each sub-group was typically dominated by a pathogenic family: Streptococcaceae (DSI), Pseudomonadaceae (DSII), Corynebacteriaceae [DSIII(a)], or Staphylococcaceae [DSIII(b)]. Each pathogenic microbiota was predicted to be functionally distinct (PERMANOVA; p = 0.005, r 2 = 0.217) and encode uniquely enriched gene pathways including ansamycin biosynthesis (DSI), tryptophan metabolism (DSII), two-component response [DSIII(b)], and the PPAR-γ signaling pathway [DSIII(a)]. Each is also associated with significantly distinct host immune responses; DSI, II, and III(b) invoked a variety of pro-inflammatory, TH1 responses, while DSIII(a), which exhibited significantly increased incidence of nasal polyps (Fisher's exact; p = 0.034, relative risk = 2.16), primarily induced IL-5 expression (Kruskal Wallis; q = 0.045). CONCLUSIONS: A large proportion of CRS patient heterogeneity may be explained by the composition of their sinus bacterial microbiota and related host immune response-features which may inform strategies for tailored therapy in this patient population.


Assuntos
Bactérias/classificação , Bactérias/imunologia , Rinite/microbiologia , Análise de Sequência de DNA/métodos , Sinusite/microbiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Bactérias/genética , Endoscopia , Feminino , Humanos , Masculino , Microbiota , Pessoa de Meia-Idade , Filogenia , RNA Ribossômico 16S/genética , Rinite/imunologia , Rinite/cirurgia , Sinusite/imunologia , Sinusite/cirurgia , Adulto Jovem
10.
Int Forum Allergy Rhinol ; 7(6): 561-569, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28481057

RESUMO

BACKGROUND: The role of microbiota in sinonasal inflammation can be further understood by targeted sampling of healthy and diseased subjects. We compared the microbiota of the middle meatus (MM) and inferior meatus (IM) in healthy, allergic rhinitis (AR), and chronic rhinosinusitis (CRS) subjects to characterize intrasubject, intersubject, and intergroup differences. METHODS: Subjects were recruited in the office, and characterized into healthy, AR, and CRS groups. Endoscopically-guided swab samples were obtained from the MM and IM bilaterally. Bacterial microbiota were characterized by sequencing the V3-V4 region of the 16S ribosomal RNA (rRNA) gene. RESULTS: Intersubject microbiome analyses were conducted in 65 subjects: 8 healthy, 11 AR, and 46 CRS (25 CRS with nasal polyps [CRSwNP]; 21 CRS without nasal polyps [CRSsNP]). Intrasubject analyses were conducted for 48 individuals (4 controls, 11 AR, 8 CRSwNP, and 15 CRSwNP). There was considerable intersubject microbiota variability, but intrasubject profiles were similar (p = 0.001, nonparametric t test). Intrasubject bacterial diversity was significantly reduced in MM of CRSsNP subjects compared to IM samples (p = 0.022, nonparametric t test). CRSsNP MM samples were enriched in Streptococcus, Haemophilus, and Fusobacterium spp. but exhibited loss of diversity compared to healthy, CRSwNP, and AR subject-samples (p < 0.05; nonparametric t test). CRSwNP patients were enriched in Staphylococcus, Alloiococcus, and Corynebacterium spp. CONCLUSION: This study presents the sinonasal microbiome profile in one of the larger populations of non-CRS and CRS subjects, and is the first office-based cohort in the literature. In contrast to healthy, AR, and CRSwNP subjects, CRSsNP MM samples exhibited decreased microbiome diversity and anaerobic enrichment. CRSsNP MM samples had reduced diversity compared to same-subject IM samples, a novel finding.


Assuntos
Bactérias/isolamento & purificação , Microbiota , Cavidade Nasal/microbiologia , Rinite/microbiologia , Sinusite/microbiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Bactérias/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Adulto Jovem
11.
Front Microbiol ; 8: 2477, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29312187

RESUMO

The respiratory tract is a complex system that is inhabited by niche-specific communities of microbes including bacteria, fungi, and viruses. These complex microbial assemblages are in constant contact with the mucosal immune system and play a critical role in airway health and immune homeostasis. Changes in the composition and diversity of airway microbiota are frequently observed in patients with chronic inflammatory diseases including chronic rhinosinusitis (CRS), cystic fibrosis, allergy, and asthma. While the bacterial microbiome of the upper and lower airways has been the focus of many recent studies, the contribution of fungal microbiota to inflammation is an emerging research interest. Within the context of allergic airway disease, fungal products are important allergens and fungi are potent inducers of inflammation. In addition, murine models have provided experimental evidence that fungal microbiota in peripheral organs, notably the gastrointestinal (GI) tract, influence pulmonary health. In this review, we explore the role of the respiratory and GI microbial communities in chronic airway inflammatory disease development with a specific focus on fungal microbiome interactions with the airway immune system and fungal-bacterial interactions that likely contribute to inflammatory disease. These findings are discussed in the context of clinical and immunological features of fungal-mediated disease in CRS, allergy, and asthmatic patients. While this field is still nascent, emerging evidence suggests that dysbiotic fungal and bacterial microbiota interact to drive or exacerbate chronic airway inflammatory disease.

12.
Int Forum Allergy Rhinol ; 6(9): 950-5, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27153455

RESUMO

BACKGROUND: Fungal hypersensitivity and fungal microbiome dysbiosis are possible etiologies of chronic rhinosinusitis. The sinus fungal microbiome is not well characterized; novel sinus-associated fungi, including Malassezia, have only recently been described. The goals for this study were to verify Malassezia as a dominant component of the sinus microbiome, to speciate sinus Malassezia, and to compare select fungal species in chronic rhinosinusitis (CRS) subtypes with known fungal association to chronic rhinosinusitis with polyps (CRSwNP) and healthy controls. METHODS: Twenty-eight patients were enrolled and categorized as CRSwNP (n = 15), fungus ball (n = 3), allergic fungal rhinosinusitis (AFRS, n = 3), or healthy control (n = 7). Brush samples were taken from ethmoid or maxillary sinus mucosa and tested for DNA from 7 index fungi using quantitative polymerase chain reaction. Index fungal species were chosen based on existing data of the sinus fungal microbiome. RESULTS: Malassezia species were detected in 68% of patients, without variation among clinical phenotypes (p > 0.99). Malassezia restricta was more commonly detected than Malassezia globosa (p = 0.029). Presence of one Malassezia species predicted the presence of the other (p = 0.035). Aspergillus was identified in 2 of 3 of fungus ball patients (both A. fumigatus) and 2 of 3 AFRS patients (1 A. fumigatus and 1 A. flavus). Aspergillus was absent in control and CRSwNP patients (p < 0.001). CONCLUSION: This study confirmed and speciated Malassezia in healthy and diseased sinuses. Presence of Malassezia species in all groups suggests a commensal role for the fungus. Future work will determine whether Malassezia influences CRS pathogenesis. Aspergillus species were identified in fungal CRS subtypes despite negative surgical cultures, highlighting the importance of culture-independent technology.


Assuntos
Aspergillus flavus/isolamento & purificação , Aspergillus fumigatus/isolamento & purificação , Malassezia/isolamento & purificação , Seios Paranasais/microbiologia , Rinite/microbiologia , Sinusite/microbiologia , Adolescente , Adulto , Idoso , Doença Crônica , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mucosa Nasal/microbiologia , Pólipos Nasais/microbiologia , Adulto Jovem
13.
PLoS One ; 6(12): e28523, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22162775

RESUMO

Chronic rhinosinusitis (CRS) is a common inflammatory disease of the sinonasal cavity mediated, in part, by polymicrobial communities of bacteria. Recent molecular studies have confirmed the importance of Streptococcus pneumoniae and nontypeable Haemophilus influenzae (NTHi) in CRS. Here, we hypothesize that interaction between S. pneumoniae and NTHi mixed-species communities cause a change in bacterial virulence gene expression. We examined CRS as a model human disease to validate these polymicrobial interactions. Clinical strains of S. pneumoniae and NTHi were grown in mono- and co-culture in a standard biofilm assay. Reverse transcriptase real-time PCR (RTqPCR) was used to measure gene expression of key virulence factors. To validate these results, we investigated the presence of the bacterial RNA transcripts in excised human tissue from patients with CRS. Consequences of physical or chemical interactions between microbes were also investigated. Transcription of NTHi type IV pili was only expressed in co-culture in vitro, and expression could be detected ex vivo in diseased tissue. S. pneumoniae pyruvate oxidase was up-regulated in co-culture, while pneumolysin and pneumococcal adherence factor A were down-regulated. These results were confirmed in excised human CRS tissue. Gene expression was differentially regulated by physical contact and secreted factors. Overall, these data suggest that interactions between H. influenzae and S. pneumoniae involve physical and chemical mechanisms that influence virulence gene expression of mixed-species biofilm communities present in chronically diseased human tissue. These results extend previous studies of population-level virulence and provide novel insight into the importance of S. pneumoniae and NTHi in CRS.


Assuntos
Regulação da Expressão Gênica , Haemophilus influenzae/metabolismo , Sinusite/microbiologia , Streptococcus pneumoniae/metabolismo , Virulência , Biofilmes , Biópsia , Doença Crônica , Técnicas de Cocultura , Primers do DNA/genética , Expressão Gênica , Genes Bacterianos , Humanos , Modelos Estatísticos , RNA/metabolismo , RNA Bacteriano/metabolismo , RNA Ribossômico 16S/metabolismo , Sinusite/fisiopatologia , Fatores de Tempo
14.
PLoS One ; 6(1): e15700, 2011 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-21253587

RESUMO

Cigarette smokers and those exposed to second hand smoke are more susceptible to life threatening infection than non-smokers. While much is known about the devastating effect tobacco exposure has on the human body, less is known about the effect of tobacco smoke on the commensal and commonly found pathogenic bacteria of the human respiratory tract, or human respiratory tract microbiome. Chronic rhinosinusitis (CRS) is a common medical complaint, affecting 16% of the US population with an estimated aggregated cost of $6 billion annually. Epidemiologic studies demonstrate a correlation between tobacco smoke exposure and rhinosinusitis. Although a common cause of CRS has not been defined, bacterial presence within the nasal and paranasal sinuses is assumed to be contributory. Here we demonstrate that repetitive tobacco smoke exposure induces biofilm formation in a diverse set of bacteria isolated from the sinonasal cavities of patients with CRS. Additionally, bacteria isolated from patients with tobacco smoke exposure demonstrate robust in vitro biofilm formation when challenged with tobacco smoke compared to those isolated from smoke naïve patients. Lastly, bacteria from smoke exposed patients can revert to a non-biofilm phenotype when grown in the absence of tobacco smoke. These observations support the hypothesis that tobacco exposure induces sinonasal biofilm formation, thereby contributing to the conversion of a transient and medically treatable infection to a persistent and therapeutically recalcitrant condition.


Assuntos
Biofilmes , Nicotiana/efeitos adversos , Seios Paranasais/microbiologia , Fumar/efeitos adversos , Poluição por Fumaça de Tabaco/efeitos adversos , Bactérias/isolamento & purificação , Infecções Bacterianas/etiologia , Doença Crônica , Humanos , Rinite/etiologia , Sinusite/etiologia
15.
Infect Immun ; 77(10): 4559-66, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19651866

RESUMO

Chronic infection with the gram-negative organism Pseudomonas aeruginosa is a leading cause of morbidity and mortality in human patients, despite high doses of antibiotics used to treat the various diseases this organism causes. These infections are chronic because P. aeruginosa readily forms biofilms, which are inherently resistant to antibiotics as well as the host's immune system. Our laboratory has been investigating specific mutations in P. aeruginosa that regulate biofilm bacterial susceptibility to the host. To continue our investigation of the role of genetics in bacterial biofilm host resistance, we examined P. aeruginosa biofilms that lack the flgK gene. This mutant lacks flagella, which results in defects in early biofilm development (up to 36 h). For these experiments, the flgK-disrupted strain and the parental strain (PA14) were used in a modified version of the 96-well plate microtiter assay. Biofilms were challenged with freshly isolated human leukocytes for 4 to 6 h and viable bacteria enumerated by CFU. Subsequent to the challenge, both mononuclear cells (monocytes and lymphocytes) and neutrophils, along with tumor necrosis factor alpha (TNF-alpha), were required for optimal killing of the flgK biofilm bacteria. We identified a cytokine cross talk network between mononuclear cells and neutrophils that was essential to the production of lactoferrin and bacterial killing. Our data suggest that TNF-alpha is secreted from mononuclear cells, causing neutrophil activation, resulting in the secretion of bactericidal concentrations of lactoferrin. These results extend previous studies of the importance of lactoferrin in the innate immune defense against bacterial biofilms.


Assuntos
Antibacterianos/farmacologia , Biofilmes/crescimento & desenvolvimento , Proteínas de Transporte/farmacologia , Flagelos/fisiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Proteínas de Bactérias/genética , Contagem de Colônia Microbiana , Flagelos/genética , Deleção de Genes , Humanos , Lactoferrina , Leucócitos/imunologia , Viabilidade Microbiana , Fator de Necrose Tumoral alfa/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA