Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Innate Immun ; 25(2): 132-143, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30774010

RESUMO

Crohn's disease (CD) is a chronic disorder of the gastrointestinal tract characterized by inflammation and intestinal epithelial injury. Loss of function mutations in the intracellular bacterial sensor NOD2 are major risk factors for the development of CD. In the absence of robust bacterial recognition by NOD2 an inflammatory cascade is initiated through alternative PRRs leading to CD. In the present study, MCC950, a specific small molecule inhibitor of NLR pyrin domain-containing protein 3 (NLRP3), abrogated dextran sodium sulfate (DSS)-induced intestinal inflammation in Nod2-/- mice. NLRP3 inflammasome formation was observed at a higher rate in NOD2-deficient small intestinal lamina propria cells after insult by DSS. NLRP3 complex formation led to an increase in IL-1ß secretion in both the small intestine and colon of Nod2ko mice. This increase in IL-1ß secretion in the intestine was attenuated by MCC950 leading to decreased disease severity in Nod2ko mice. Our work suggests that NLRP3 inflammasome activation may be a key driver of intestinal inflammation in the absence of functional NOD2. NLRP3 pathway inhibition can prevent intestinal inflammation in the absence of robust NOD2 signaling.


Assuntos
Colite/imunologia , Doença de Crohn/imunologia , Microbioma Gastrointestinal/imunologia , Inflamassomos/metabolismo , Mucosa Intestinal/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína Adaptadora de Sinalização NOD2/genética , Animais , Colite/induzido quimicamente , Sulfato de Dextrana , Modelos Animais de Doenças , Furanos/administração & dosagem , Furanos/farmacologia , Compostos Heterocíclicos de 4 ou mais Anéis , Humanos , Indenos , Interleucina-1beta/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Transdução de Sinais , Sulfonamidas/administração & dosagem , Sulfonamidas/farmacologia , Sulfonas
2.
PLoS One ; 13(11): e0207002, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30412600

RESUMO

Microbes colonizing colorectal cancer (CRC) tumors have the potential to affect disease, and vice-versa. The manner in which they differ from microbes in physically adjacent tissue or stool within the case in terms of both, taxonomy and biological activity remains unclear. In this study, we systematically analyzed previously published 16S rRNA sequence data from CRC patients with matched tumor:tumor-adjacent biopsies (n = 294 pairs, n = 588 biospecimens) and matched tumor biopsy:fecal pairs (n = 42 pairs, n = 84 biospecimens). Procrustes analyses, random effects regression, random forest (RF) modeling, and inferred functional pathway analyses were conducted to assess community similarity and microbial diversity across heterogeneous patient groups and studies. Our results corroborate previously reported association of increased Fusobacterium with tumor biopsies. Parvimonas and Streptococcus abundances were also elevated while Faecalibacterium and Ruminococcaceae abundances decreased in tumors relative to tumor-adjacent biopsies and stool samples from the same case. With the exception of these limited taxa, the majority of findings from individual studies were not confirmed by other 16S rRNA gene-based datasets. RF models comparing tumor and tumor-adjacent specimens yielded an area under curve (AUC) of 64.3%, and models of tumor biopsies versus fecal specimens exhibited an AUC of 82.5%. Although some taxa were shared between fecal and tumor samples, their relative abundances varied substantially. Inferred functional analysis identified potential differences in branched amino acid and lipid metabolism. Microbial markers that reliably occur in tumor tissue can have implications for microbiome based and microbiome targeting therapeutics for CRC.


Assuntos
Bactérias/genética , Colo/patologia , Neoplasias Colorretais/patologia , Fezes/microbiologia , Microbioma Gastrointestinal , RNA Ribossômico 16S/metabolismo , Área Sob a Curva , Bactérias/isolamento & purificação , Colo/microbiologia , Neoplasias Colorretais/microbiologia , Fusobacterium/genética , Fusobacterium/isolamento & purificação , Humanos , RNA Ribossômico 16S/genética , Curva ROC , Ruminococcus/genética , Ruminococcus/isolamento & purificação
3.
Gut ; 67(5): 882-891, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-28341746

RESUMO

OBJECTIVE: Colorectal cancer (CRC) is the second leading cause of cancer-associated mortality in the USA. The faecal microbiome may provide non-invasive biomarkers of CRC and indicate transition in the adenoma-carcinoma sequence. Re-analysing raw sequence and metadata from several studies uniformly, we sought to identify a composite and generalisable microbial marker for CRC. DESIGN: Raw 16S rRNA gene sequence data sets from nine studies were processed with two pipelines, (1) QIIME closed reference (QIIME-CR) or (2) a strain-specific method herein termed SS-UP (Strain Select, UPARSE bioinformatics pipeline). A total of 509 samples (79 colorectal adenoma, 195 CRC and 235 controls) were analysed. Differential abundance, meta-analysis random effects regression and machine learning analyses were carried out to determine the consistency and diagnostic capabilities of potential microbial biomarkers. RESULTS: Definitive taxa, including Parvimonas micra ATCC 33270, Streptococcus anginosus and yet-to-be-cultured members of Proteobacteria, were frequently and significantly increased in stools from patients with CRC compared with controls across studies and had high discriminatory capacity in diagnostic classification. Microbiome-based CRC versus control classification produced an area under receiver operator characteristic (AUROC) curve of 76.6% in QIIME-CR and 80.3% in SS-UP. Combining clinical and microbiome markers gave a diagnostic AUROC of 83.3% for QIIME-CR and 91.3% for SS-UP. CONCLUSIONS: Despite technological differences across studies and methods, key microbial markers emerged as important in classifying CRC cases and such could be used in a universal diagnostic for the disease. The choice of bioinformatics pipeline influenced accuracy of classification. Strain-resolved microbial markers might prove crucial in providing a microbial diagnostic for CRC.


Assuntos
Biomarcadores Tumorais/análise , Neoplasias Colorretais/microbiologia , Fezes/microbiologia , Microbioma Gastrointestinal/genética , Área Sob a Curva , Neoplasias Colorretais/diagnóstico , DNA Bacteriano/análise , Humanos , RNA Ribossômico 16S , Sensibilidade e Especificidade , Inquéritos e Questionários
5.
J Struct Biol ; 184(2): 335-44, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24099757

RESUMO

Kar3Cik1 is a heterodimeric kinesin-14 from Saccharomyces cerevisiae involved in spindle formation during mitosis and karyogamy in mating cells. Kar3 represents a canonical kinesin motor domain that interacts with microtubules under the control of ATP-hydrolysis. In vivo, the localization and function of Kar3 is differentially regulated by its interacting stoichiometrically with either Cik1 or Vik1, two closely related motor homology domains that lack the nucleotide-binding site. Indeed, Vik1 structurally resembles the core of a kinesin head. Despite being closely related, Kar3Cik1 and Kar3Vik1 are each responsible for a distinct set of functions in vivo and also display different biochemical behavior in vitro. To determine a structural basis for their distinct functional abilities, we used cryo-electron microscopy and helical reconstruction to investigate the 3-D structure of Kar3Cik1 complexed to microtubules in various nucleotide states and compared our 3-D data of Kar3Cik1 with that of Kar3Vik1 and the homodimeric kinesin-14 Ncd from Drosophila melanogaster. Due to the lack of an X-ray crystal structure of the Cik1 motor homology domain, we predicted the structure of this Cik1 domain based on sequence similarity to its relatives Vik1, Kar3 and Ncd. By molecular docking into our 3-D maps, we produced a detailed near-atomic model of Kar3Cik1 complexed to microtubules in two distinct nucleotide states, a nucleotide-free state and an ATP-bound state. Our data show that despite their functional differences, heterodimeric Kar3Cik1 and Kar3Vik1 and homodimeric Ncd, all share striking structural similarities at distinct nucleotide states indicating a common mechanistic theme within the kinesin-14 family.


Assuntos
Proteínas dos Microtúbulos/ultraestrutura , Proteínas Associadas aos Microtúbulos/ultraestrutura , Microtúbulos/ultraestrutura , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Saccharomyces cerevisiae/ultraestrutura , Adenilil Imidodifosfato/química , Microscopia Crioeletrônica , Proteínas dos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/química , Microtúbulos/química , Modelos Moleculares , Simulação de Acoplamento Molecular , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/química
6.
PLoS One ; 8(1): e53792, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23342004

RESUMO

We have used cryo-electron microscopy (cryo-EM) and helical averaging to examine the 3-D structure of the heterodimeric kinesin-14 Kar3Vik1 complexed to microtubules at a resolution of 2.5 nm. 3-D maps were obtained at key points in Kar3Vik1's nucleotide hydrolysis cycle to gain insight into the mechanism that this motor uses for retrograde motility. In all states where Kar3Vik1 maintained a strong interaction with the microtubule, we found, as observed by cryo-EM, that the motor bound with one head domain while the second head extended outwards. 3-D reconstructions of Kar3Vik1-microtubule complexes revealed that in the nucleotide-free state, the motor's coiled-coil stalk points toward the plus-end of the microtubule. In the ATP-state, the outer head is shown to undergo a large rotation that reorients the stalk ∼75° to point toward the microtubule minus-end. To determine which of the two heads binds to tubulin in each nucleotide state, we employed specific Nanogold®-labeling of Vik1. The resulting maps confirmed that in the nucleotide-free, ATP and ADP+Pi states, Kar3 maintains contact with the microtubule surface, while Vik1 extends away from the microtubule and tracks with the coiled-coil as it rotates towards the microtubule minus-end. While many previous investigations have focused on the mechanisms of homodimeric kinesins, this work presents the first comprehensive study of the powerstroke of a heterodimeric kinesin. The stalk rotation shown here for Kar3Vik1 is highly reminiscent of that reported for the homodimeric kinesin-14 Ncd, emphasizing the conservation of a mechanism for minus-end directed motility.


Assuntos
Cinesinas/química , Cinesinas/metabolismo , Microtúbulos/metabolismo , Movimento , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Animais , Bovinos , Microscopia Crioeletrônica , Modelos Moleculares , Dados de Sequência Molecular , Fosfatos/metabolismo , Conformação Proteica , Multimerização Proteica , Rotação , Processos Estocásticos
7.
J Cell Biol ; 197(7): 957-70, 2012 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-22734002

RESUMO

Kinesin-14 motors generate microtubule minus-end-directed force used in mitosis and meiosis. These motors are dimeric and operate with a nonprocessive powerstroke mechanism, but the role of the second head in motility has been unclear. In Saccharomyces cerevisiae, the Kinesin-14 Kar3 forms a heterodimer with either Vik1 or Cik1. Vik1 contains a motor homology domain that retains microtubule binding properties but lacks a nucleotide binding site. In this case, both heads are implicated in motility. Here, we show through structural determination of a C-terminal heterodimeric Kar3Vik1, electron microscopy, equilibrium binding, and motility that at the start of the cycle, Kar3Vik1 binds to or occludes two αß-tubulin subunits on adjacent protofilaments. The cycle begins as Vik1 collides with the microtubule followed by Kar3 microtubule association and ADP release, thereby destabilizing the Vik1-microtubule interaction and positioning the motor for the start of the powerstroke. The results indicate that head-head communication is mediated through the adjoining coiled coil.


Assuntos
Proteínas Fúngicas/metabolismo , Cinesinas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Difosfato de Adenosina/metabolismo , Microscopia Crioeletrônica , Proteínas Fúngicas/química , Proteínas Fúngicas/ultraestrutura , Cinesinas/química , Cinesinas/ultraestrutura , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/ultraestrutura , Modelos Moleculares , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA