Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
NPJ Precis Oncol ; 2: 26, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30480095

RESUMO

Secretome of primary cultures is an accessible source of biological markers compared to more complex and less decipherable mixtures such as serum or plasma. The protonation state (PS) of secretome reflects the metabolism of cells and can be used for cancer early detection. Here, we demonstrate a superhydrophobic organic electrochemical device that measures PS in a drop of secretome derived from liquid biopsies. Using data from the sensor and principal component analysis (PCA), we developed algorithms able to efficiently discriminate tumour patients from non-tumour patients. We then validated the results using mass spectrometry and biochemical analysis of samples. For the 36 patients across three independent cohorts, the method identified tumour patients with high sensitivity and identification as high as 100% (no false positives) with declared subjects at-risk, for sporadic cancer onset, by intermediate values of PS. This assay could impact on cancer risk management, individual's diagnosis and/or help clarify risk in healthy populations.

2.
Nanotechnology ; 25(36): 365502, 2014 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-25121359

RESUMO

High sensitivity zinc oxide (ZnO) tetrapods (TPs) have been functionalized by nucleating cadmium sulphide (CdS) nanoparticles (NPs) directly on their surface with a spotted coverage thanks to an optimized synthesis in dimethylformamide (DMF). The obtained hybrid coupled material has been used to realize a gas sensing device with a highly porous nanostructured network, in which the proper alternation of ZnO-TPs and CdS-NPs gives rise to unconventional chemoresistive behaviours. Among the different tested gases and vapours, the sensor showed a unique fingerprint response-inversion between 300 °C and 400 °C only for nitrogen dioxide (NO2) and acetic acid (CH3COOH).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA