Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Ther ; 32(3): 783-799, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38196192

RESUMO

We recently described a novel ribosome-based regulatory mechanism/checkpoint that controls innate immune gene translation and microglial activation in non-sterile inflammation orchestrated by RNA binding protein SRSF3. Here we describe a role of SRSF3 in the regulation of microglia/macrophage activation phenotypes after experimental stroke. Using a model-system for analysis of the dynamic translational state of microglial ribosomes we show that 24 h after stroke highly upregulated immune mRNAs are not translated resulting in a marked dissociation of mRNA and protein networks in activated microglia/macrophages. Next, microglial activation after stroke was characterized by a robust increase in pSRSF3/SRSF3 expression levels. Targeted knockdown of SRSF3 using intranasal delivery of siRNA 24 h after stroke caused a marked knockdown of endogenous protein. Further analyses revealed that treatment with SRSF3-siRNA alleviated translational arrest of selected genes and induced a transient but significant increase in innate immune signaling and IBA1+ immunoreactivity peaking 5 days after initial injury. Importantly, delayed SRSF3-mediated increase in immune signaling markedly reduced the size of ischemic lesion measured 7 days after stroke. Together, our findings suggest that targeting SRSF3 and immune mRNA translation may open new avenues for molecular/therapeutic reprogramming of innate immune response after ischemic injury.


Assuntos
Isquemia Encefálica , Acidente Vascular Cerebral , Humanos , Microglia/metabolismo , Isquemia Encefálica/genética , Isquemia Encefálica/terapia , Macrófagos/metabolismo , Acidente Vascular Cerebral/patologia , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Fatores de Processamento de Serina-Arginina/genética , Fatores de Processamento de Serina-Arginina/metabolismo
2.
Int J Mol Sci ; 24(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36982140

RESUMO

Amyotrophic lateral sclerosis (ALS) is a clinically highly heterogeneous disease with a survival rate ranging from months to decades. Evidence suggests that a systemic deregulation of immune response may play a role and affect disease progression. Here, we measured 62 different immune/metabolic mediators in plasma of sporadic ALS (sALS) patients. We show that, at the protein level, the majority of immune mediators including a metabolic sensor, leptin, were significantly decreased in the plasma of sALS patients and in two animal models of the disease. Next, we found that a subset of patients with rapidly progressing ALS develop a distinct plasma assess immune-metabolic molecular signature characterized by a differential increase in soluble tumor necrosis factor receptor II (sTNF-RII) and chemokine (C-C motif) ligand 16 (CCL16) and further decrease in the levels of leptin, mostly dysregulated in male patients. Consistent with in vivo findings, exposure of human adipocytes to sALS plasma and/or sTNF-RII alone, induced a significant deregulation in leptin production/homeostasis and was associated with a robust increase in AMP-activated protein kinase (AMPK) phosphorylation. Conversely, treatment with an AMPK inhibitor restored leptin production in human adipocytes. Together, this study provides evidence of a distinct plasma immune profile in sALS which affects adipocyte function and leptin signaling. Furthermore, our results suggest that targeting the sTNF-RII/AMPK/leptin pathway in adipocytes may help restore assess immune-metabolic homeostasis in ALS.


Assuntos
Esclerose Lateral Amiotrófica , Leptina , Animais , Humanos , Masculino , Proteínas Quinases Ativadas por AMP , Receptores do Fator de Necrose Tumoral , Homeostase
3.
Neurobiol Aging ; 40: 50-60, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26973103

RESUMO

Estrogens are known to exert neuroprotective and immuneomodulatory effects after stroke. However, at present, little is known about the role of estrogens and its receptors in postischemic inflammation after menopause. Here, we provide important in vivo evidence of a distinct shift in microglial phenotypes in the model of postmenopause brain. Using a model-system for live imaging of microglial activation in the context of chronic estrogen- and ERα-deficiency associated with aging, we observed a marked deregulation of the TLR2 signals and/or microglial activation in ovariectomized and/or ERα knockout mice. Further analysis revealed a 5.7-fold increase in IL-6, a 4.7-fold increase in phospho-Stat3 levels suggesting an overactivation of JAK/STAT3 pathway and significantly larger infarction in ERα knockouts chronically deprived of estrogen. Taken together, our results suggest that in the experimental model of menopause and/or aging, ERα mediates innate immune responses and/or microglial activation, and ischemia-induced production of IL-6. Based on our results, we propose that the loss of functional ERα may lead to deregulation of postischemic inflammatory responses and increased vulnerability to ischemic injury in aging female brains.


Assuntos
Envelhecimento , Isquemia Encefálica/patologia , Encéfalo/patologia , Receptor alfa de Estrogênio/deficiência , Receptor alfa de Estrogênio/fisiologia , Menopausa , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Encéfalo/metabolismo , Isquemia Encefálica/metabolismo , Estrogênios/deficiência , Estrogênios/fisiologia , Feminino , Imunidade Inata , Interleucina-6/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/patologia , Modelos Animais , Fator de Transcrição STAT3/metabolismo
4.
Stroke ; 39(3): 935-42, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18258827

RESUMO

BACKGROUND AND PURPOSE: We sought to develop a model system for live analysis of brain inflammatory response in ischemic injury. METHODS: Using a reporter mouse-expressing luciferase gene under transcriptional control of the murine glial fibrillary acidic protein (GFAP) promoter (GFAP-luc mice) and biophotonic/bioluminescent imaging as tools, we developed a model system for in vivo analysis of astrocyte activation/response in cerebral ischemia. RESULTS: Analysis of photon emissions from the brains of living animals revealed marked sex differences in astrocyte response to ischemic injury. The increase in GFAP signals was significantly higher in female mice in the metestrus/diestrus period compared with male transgenic mice (1.71 x 10(7)+/-0.19 x 10(7) vs 0.92 x 10(7)+/-0.15 x 10(7), P<0.001). Similar results were obtained by quantitative immunohistochemistry (males vs females: 13.4+/-0.5 vs 16.96+/-0.64, P<0.0001). However, astrocyte activation/GFAP signals showed cyclic, estrus-dependent variations in response to ischemic injury. Physiologically higher levels of estrogen and application of pharmacologic doses of estrogen during replacement therapy attenuated GFAP upregulation after stroke. Interestingly, contrary to a positive correlation between the intensities of GFAP signals and infarct size in male mice, no such correlation was observed in any of the experimental groups of female GFAP-luc mice. CONCLUSIONS: Our results suggest that GFAP upregulation in ischemic injury may have different functional significance in female and male experimental animals and may not directly reflect the extent of ischemia-induced neuronal damage in female GFAP-luc mice. Using a novel live imaging approach, we demonstrated that the early-phase brain inflammatory response to ischemia may be associated with sex-specific biomarkers of brain damage.


Assuntos
Astrócitos/patologia , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Encefalite/diagnóstico , Estrogênios/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Fatores Sexuais , Animais , Isquemia Encefálica/complicações , Infarto Cerebral/etiologia , Infarto Cerebral/patologia , Diestro , Encefalite/etiologia , Encefalite/metabolismo , Estrogênios/farmacologia , Feminino , Proteína Glial Fibrilar Ácida/genética , Imuno-Histoquímica , Luminescência , Masculino , Metestro , Camundongos , Camundongos Transgênicos , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA