Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Eur J Hum Genet ; 32(8): 954-963, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38824261

RESUMO

Pathogenic, largely truncating variants in the ETS2 repressor factor (ERF) gene, encoding a transcriptional regulator negatively controlling RAS-MAPK signaling, have been associated with syndromic craniosynostosis involving various cranial sutures and Chitayat syndrome, an ultrarare condition with respiratory distress, skeletal anomalies, and facial dysmorphism. Recently, a single patient with craniosynostosis and a phenotype resembling Noonan syndrome (NS), the most common disorder among the RASopathies, was reported to carry a de novo loss-of-function variant in ERF. Here, we clinically profile 26 individuals from 15 unrelated families carrying different germline heterozygous variants in ERF and showing a phenotype reminiscent of NS. The majority of subjects presented with a variable degree of global developmental and/or language delay. Their shared facial features included absolute/relative macrocephaly, high forehead, hypertelorism, palpebral ptosis, wide nasal bridge, and low-set/posteriorly angulated ears. Stature was below the 3rd centile in two-third of the individuals, while no subject showed typical NS cardiac involvement. Notably, craniosynostosis was documented only in three unrelated individuals, while a dolichocephalic aspect of the skull in absence of any other evidence supporting a premature closing of sutures was observed in other 10 subjects. Unilateral Wilms tumor was diagnosed in one individual. Most cases were familial, indicating an overall low impact on fitness. Variants were nonsense and frameshift changes, supporting ERF haploinsufficiency. These findings provide evidence that heterozygous loss-of-function variants in ERF cause a "RASopathy" resembling NS with or without craniosynostosis, and allow a first dissection of the molecular circuits contributing to MAPK signaling pleiotropy.


Assuntos
Craniossinostoses , Síndrome de Noonan , Fenótipo , Humanos , Craniossinostoses/genética , Craniossinostoses/patologia , Feminino , Masculino , Síndrome de Noonan/genética , Síndrome de Noonan/patologia , Criança , Pré-Escolar , Lactente , Mutação com Perda de Função , Adolescente , Proteínas Repressoras/genética , Adulto
2.
Genes (Basel) ; 13(5)2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35627274

RESUMO

OBJECTIVE: The co-occurrence of pathogenic variants has emerged as a relatively common finding underlying complex phenotypes. Here, we used whole-exome sequencing (WES) to solve an unclassified multisystem clinical presentation. PATIENTS AND METHODS: A 20-year-old woman affected by moderate intellectual disability (ID), dysmorphic features, hypertrichosis, scoliosis, recurrent bronchitis, and pneumonia with bronchiectasis, colelithiasis, chronic severe constipation, and a family history suggestive of autosomal dominant recurrence of polycystic kidney disease was analyzed by WES to identify the genomic events underlying the condition. RESULTS: Four co-occurring genomic events fully explaining the proband's clinical features were identified. A de novo truncating USP7 variant was disclosed as the cause of Hao-Fountain syndrome, a disorder characterized by syndromic ID and distinctive behavior. Compound heterozygosity for a major cystic fibrosis-causing variant and the modulator allele, IVS8-5T, in CFTR explained the recurrent upper and lower respiratory way infections, bronchiectasis, cholelithiasis, and chronic constipation. Finally, a truncating PKD2 variant co-segregating with polycystic kidney disease in the family allowed presymptomatic disease diagnosis. CONCLUSIONS: The co-occurring variants in USP7 and CFTR variants explained the multisystem disorder of the patient. The comprehensive dissection of the phenotype and early diagnosis of autosomal dominant polycystic kidney disease allowed us to manage the CFTR-related disorder symptoms and monitor renal function and other complications associated with PKD2 haploinsufficiency, addressing proper care and surveillance.


Assuntos
Bronquiectasia , Rim Policístico Autossômico Dominante , Anormalidades Múltiplas , Doenças do Desenvolvimento Ósseo , Bronquiectasia/genética , Constipação Intestinal/genética , Anormalidades Craniofaciais , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Surdez , Exoma/genética , Genômica , Humanos , Deficiência Intelectual , Rim Policístico Autossômico Dominante/genética , Peptidase 7 Específica de Ubiquitina/genética , Sequenciamento do Exoma
3.
Clin Genet ; 98(2): 172-178, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32415735

RESUMO

UBE2A deficiency, that is, intellectual disability (ID) Nascimento type (MIM 300860), is an X-linked syndrome characterized by developmental delay, moderate to severe ID, seizures, dysmorphisms, skin anomalies, and urogenital malformations. Forty affected subjects have been reported thus far, with 31 cases having intragenic UBE2A variants. Here, we report on additional eight affected subjects from seven unrelated families who were found to be hemizygous for previously unreported UBE2A missense variants (p.Glu62Lys, p.Arg95Cys, p.Thr99Ala, and p.Arg135Trp) or small in-frame deletions (p.Val81_Ala83del, and p.Asp101del). A wide phenotypic spectrum was documented in these subjects, ranging from moderate ID associated with mild dysmorphisms to severe features including congenital heart defects (CHD), severe cognitive impairment, and pineal gland tumors. Four variants affected residues (Glu62, Arg95, Thr99 and Asp101) that contribute to stabilizing the structure of the E3 binding domain. The three-residue in-frame deletion, p.Val81_Ala83del, resulted from aberrant processing of the transcript. This variant and p.Arg135Trp mapped to regions of the protein located far from the E3 binding region, and caused variably accelerated protein degradation. By reviewing available clinical information, we revise the clinical and molecular profile of the disorder and document genotype-phenotype correlations. Pineal gland cysts/tumors, CHD and hypogammaglobulinemia emerge as recurrent features.


Assuntos
Doenças Genéticas Ligadas ao Cromossomo X/genética , Cardiopatias Congênitas/genética , Deficiência Intelectual/genética , Enzimas de Conjugação de Ubiquitina/genética , Pré-Escolar , Feminino , Doenças Genéticas Ligadas ao Cromossomo X/complicações , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Predisposição Genética para Doença , Cardiopatias Congênitas/complicações , Cardiopatias Congênitas/patologia , Humanos , Lactente , Deficiência Intelectual/complicações , Deficiência Intelectual/patologia , Masculino , Linhagem , Anormalidades da Pele/complicações , Anormalidades da Pele/genética , Anormalidades da Pele/patologia , Anormalidades Urogenitais/complicações , Anormalidades Urogenitais/genética , Anormalidades Urogenitais/patologia
4.
Clin Genet ; 97(6): 890-901, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32266967

RESUMO

Primrose syndrome (PS; MIM# 259050) is characterized by intellectual disability (ID), macrocephaly, unusual facial features (frontal bossing, deeply set eyes, down-slanting palpebral fissures), calcified external ears, sparse body hair and distal muscle wasting. The syndrome is caused by de novo heterozygous missense variants in ZBTB20. Most of the 29 published patients are adults as characteristics appear more recognizable with age. We present 13 hitherto unpublished individuals and summarize the clinical and molecular findings in all 42 patients. Several signs and symptoms of PS develop during childhood, but the cardinal features, such as calcification of the external ears, cystic bone lesions, muscle wasting, and contractures typically develop between 10 and 16 years of age. Biochemically, anemia and increased alpha-fetoprotein levels are often present. Two adult males with PS developed a testicular tumor. Although PS should be regarded as a progressive entity, there are no indications that cognition becomes more impaired with age. No obvious genotype-phenotype correlation is present. A subgroup of patients with ZBTB20 variants may be associated with mild, nonspecific ID. Metabolic investigations suggest a disturbed mitochondrial fatty acid oxidation. We suggest a regular surveillance in all adult males with PS until it is clear whether or not there is a truly elevated risk of testicular cancer.


Assuntos
Anormalidades Múltiplas/genética , Calcinose/genética , Otopatias/genética , Predisposição Genética para Doença , Deficiência Intelectual/genética , Megalencefalia/genética , Atrofia Muscular/genética , Proteínas do Tecido Nervoso/genética , Fatores de Transcrição/genética , 3-Hidroxiacil-CoA Desidrogenases/genética , Anormalidades Múltiplas/patologia , Acetil-CoA C-Aciltransferase/genética , Adolescente , Adulto , Calcinose/patologia , Isomerases de Ligação Dupla Carbono-Carbono/genética , Criança , Pré-Escolar , Otopatias/patologia , Enoil-CoA Hidratase/genética , Face/anormalidades , Feminino , Estudos de Associação Genética , Heterozigoto , Humanos , Lactente , Deficiência Intelectual/patologia , Masculino , Megalencefalia/patologia , Pessoa de Meia-Idade , Mitocôndrias/genética , Mitocôndrias/patologia , Atrofia Muscular/patologia , Mutação , Mutação de Sentido Incorreto/genética , Fenótipo , Racemases e Epimerases/genética , Neoplasias Testiculares , Adulto Jovem
5.
Hum Mutat ; 36(11): 1080-7, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26173643

RESUMO

The RASopathies constitute a family of autosomal-dominant disorders whose major features include facial dysmorphism, cardiac defects, reduced postnatal growth, variable cognitive deficits, ectodermal and skeletal anomalies, and susceptibility to certain malignancies. Noonan syndrome (NS), the commonest RASopathy, is genetically heterogeneous and caused by functional dysregulation of signal transducers and regulatory proteins with roles in the RAS/extracellular signal-regulated kinase (ERK) signal transduction pathway. Mutations in known disease genes account for approximately 80% of affected individuals. Here, we report that missense mutations altering Son of Sevenless, Drosophila, homolog 2 (SOS2), which encodes a RAS guanine nucleotide exchange factor, occur in a small percentage of subjects with NS. Four missense mutations were identified in five unrelated sporadic cases and families transmitting NS. Disease-causing mutations affected three conserved residues located in the Dbl homology (DH) domain, of which two are directly involved in the intramolecular binding network maintaining SOS2 in its autoinhibited conformation. All mutations were found to promote enhanced signaling from RAS to ERK. Similar to NS-causing SOS1 mutations, the phenotype associated with SOS2 defects is characterized by normal development and growth, as well as marked ectodermal involvement. Unlike SOS1 mutations, however, those in SOS2 are restricted to the DH domain.


Assuntos
Estudos de Associação Genética , Mutação , Síndrome de Noonan/genética , Domínios e Motivos de Interação entre Proteínas/genética , Proteínas Son Of Sevenless/genética , Adolescente , Adulto , Alelos , Substituição de Aminoácidos , Criança , Análise Mutacional de DNA , Exoma , Fácies , Feminino , Genótipo , Humanos , Masculino , Modelos Moleculares , Síndrome de Noonan/diagnóstico , Fenótipo , Conformação Proteica , Proteínas Son Of Sevenless/química , Adulto Jovem
6.
Am J Med Genet A ; 167A(8): 1902-7, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25846317

RESUMO

Noonan-like syndrome with loose anagen hair (NSLH), also known as Mazzanti syndrome, is a RASopathy characterized by craniofacial features resembling Noonan syndrome, cardiac defects, cognitive deficits and behavioral issues, reduced growth generally associated with GH deficit, darkly pigmented skin, and an unique combination of ectodermal anomalies. Virtually all cases of NSLH are caused by an invariant and functionally unique mutation in SHOC2 (c.4A>G, p.Ser2Gly). Here, we report on a child with molecularly confirmed NSLH who developed a neuroblastoma, first suspected at the age 3 months by abdominal ultrasound examination. Based on this finding, scanning of the SHOC2 coding sequence encompassing the c.4A>G change was performed on selected pediatric cohorts of malignancies documented to occur in RASopathies (i.e., neuroblastoma, brain tumors, rhabdomyosarcoma, acute lymphoblastic, and myeloid leukemia), but failed to identify a functionally relevant cancer-associated variant. While these results do not support a major role of somatic SHOC2 mutations in these pediatric cancers, this second instance of neuroblastoma in NSLAH suggests a possible predisposition to this malignancy in subjects heterozygous for the c.4A>G SHOC2 mutation.


Assuntos
Neuroblastoma/complicações , Síndrome de Noonan/fisiopatologia , Humanos , Recém-Nascido , Masculino , Síndrome de Noonan/complicações
7.
Nat Genet ; 46(8): 815-7, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25017102

RESUMO

Primrose syndrome and 3q13.31 microdeletion syndrome are clinically related disorders characterized by tall stature, macrocephaly, intellectual disability, disturbed behavior and unusual facial features, with diabetes, deafness, progressive muscle wasting and ectopic calcifications specifically occurring in the former. We report that missense mutations in ZBTB20, residing within the 3q13.31 microdeletion syndrome critical region, underlie Primrose syndrome. This finding establishes a genetic link between these disorders and delineates the impact of ZBTB20 dysregulation on development, growth and metabolism.


Assuntos
Anormalidades Múltiplas/genética , Calcinose/genética , Otopatias/genética , Deficiência Intelectual/genética , Atrofia Muscular/genética , Mutação de Sentido Incorreto , Proteínas do Tecido Nervoso/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Sequência de Bases , Linhagem Celular , Deleção Cromossômica , Cromossomos Humanos Par 3 , Deficiências do Desenvolvimento/genética , Feminino , Predisposição Genética para Doença , Células HEK293 , Humanos , Masculino , Modelos Moleculares , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos
8.
Hum Mutat ; 30(4): 695-702, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19206169

RESUMO

Noonan, LEOPARD, and cardiofaciocutaneous syndromes (NS, LS, and CFCS) are developmental disorders with overlapping features including distinctive facial dysmorphia, reduced growth, cardiac defects, skeletal and ectodermal anomalies, and variable cognitive deficits. Dysregulated RAS-mitogen-activated protein kinase (MAPK) signal traffic has been established to represent the molecular pathogenic cause underlying these conditions. To investigate the phenotypic spectrum and molecular diversity of germline mutations affecting BRAF, which encodes a serine/threonine kinase functioning as a RAS effector frequently mutated in CFCS, subjects with a diagnosis of NS (N=270), LS (N=6), and CFCS (N=33), and no mutation in PTPN11, SOS1, KRAS, RAF1, MEK1, or MEK2, were screened for the entire coding sequence of the gene. Besides the expected high prevalence of mutations observed among CFCS patients (52%), a de novo heterozygous missense change was identified in one subject with LS (17%) and five individuals with NS (1.9%). Mutations mapped to multiple protein domains and largely did not overlap with cancer-associated defects. NS-causing mutations had not been documented in CFCS, suggesting that the phenotypes arising from germline BRAF defects might be allele specific. Selected mutant BRAF proteins promoted variable gain of function of the kinase, but appeared less activating compared to the recurrent cancer-associated p.Val600Glu mutant. Our findings provide evidence for a wide phenotypic diversity associated with mutations affecting BRAF, and occurrence of a clinical continuum associated with these molecular lesions.


Assuntos
Anormalidades Múltiplas/genética , Mutação em Linhagem Germinativa , Síndrome LEOPARD/genética , Síndrome de Noonan/genética , Proteínas Proto-Oncogênicas B-raf/genética , Anormalidades Múltiplas/patologia , Estudos de Coortes , Face/anormalidades , Feminino , Frequência do Gene , Variação Genética , Genótipo , Cardiopatias Congênitas/patologia , Humanos , Síndrome LEOPARD/patologia , Masculino , Mutação de Sentido Incorreto , Síndrome de Noonan/patologia , Fenótipo , Anormalidades da Pele
9.
Eur J Hum Genet ; 17(6): 733-40, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19156172

RESUMO

Cardio-facio-cutaneous syndrome (CFCS) is a rare disease characterized by mental retardation, facial dysmorphisms, ectodermal abnormalities, heart defects and developmental delay. CFCS is genetically heterogeneous and mutations in the KRAS, BRAF, MAP2K1 (MEK1) and MAP2K2 (MEK2) genes, encoding for components of the RAS-mitogen activated protein kinase (MAPK) signaling pathway, have been identified in up to 90% of cases. Here we screened a cohort of 33 individuals with CFCS for MEK1 and MEK2 gene mutations to further explore their molecular spectrum in this disorder, and to analyze genotype-phenotype correlations. Three MEK1 and two MEK2 mutations were detected in six patients. Two missense MEK1 (L42F and Y130H) changes and one in-frame MEK2 (K63_E66del) deletion had not been reported earlier. All mutations were localized within exon 2 or 3. Together with the available records, the present data document that MEK1 mutations are relatively more frequent than those in MEK2, with exons 2 and 3 being mutational hot spots in both genes. Mutational analysis of the affected MEK1 and MEK2 exons did not reveal occurrence of mutations among 75 patients with Noonan syndrome, confirming the low prevalence of MEK gene defects in this disorder. Clinical review of known individuals with MEK1/MEK2 mutations suggests that these patients show dysmorphic features, ectodermal abnormalities and cognitive deficit similar to what was observed in BRAF-mutated patients and in the general CFCS population. Conversely, congenital heart defects, particularly mitral valve and septal defects, and ocular anomalies seem to be less frequent among MEK1/MEK2 mutation-positive patients.


Assuntos
Anormalidades Múltiplas/genética , MAP Quinase Quinase 1/genética , MAP Quinase Quinase 2/genética , Mutação/genética , Fenótipo , Criança , Pré-Escolar , Estudos de Coortes , Displasia Ectodérmica/genética , Feminino , Cardiopatias Congênitas/genética , Humanos , Deficiência Intelectual/genética , Masculino , Síndrome
10.
Am J Hum Genet ; 78(2): 279-90, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16358218

RESUMO

Germline mutations in PTPN11, the gene encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome (NS) and the clinically related LEOPARD syndrome (LS), whereas somatic mutations in the same gene contribute to leukemogenesis. On the basis of our previously gathered genetic and biochemical data, we proposed a model that splits NS- and leukemia-associated PTPN11 mutations into two major classes of activating lesions with differential perturbing effects on development and hematopoiesis. To test this model, we investigated further the diversity of germline and somatic PTPN11 mutations, delineated the association of those mutations with disease, characterized biochemically a panel of mutant SHP-2 proteins recurring in NS, LS, and leukemia, and performed molecular dynamics simulations to determine the structural effects of selected mutations. Our results document a strict correlation between the identity of the lesion and disease and demonstrate that NS-causative mutations have less potency for promoting SHP-2 gain of function than do leukemia-associated ones. Furthermore, we show that the recurrent LS-causing Y279C and T468M amino acid substitutions engender loss of SHP-2 catalytic activity, identifying a previously unrecognized behavior for this class of missense PTPN11 mutations.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/genética , Síndrome LEOPARD/genética , Leucemia/genética , Síndrome de Noonan/genética , Proteínas Tirosina Fosfatases/genética , Adulto , Sequência de Aminoácidos , Estudos de Coortes , Feminino , Mutação em Linhagem Germinativa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Masculino , Mutação , Conformação Proteica , Proteína Tirosina Fosfatase não Receptora Tipo 11 , Proteínas Tirosina Fosfatases/química
11.
Leuk Res ; 29(4): 459-62, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15725481

RESUMO

Myelodysplastic syndromes (MDS) are comprised of a heterogeneous group of stem cell disorders characterized by ineffective hematopoiesis and susceptibility to transform to acute myeloid leukemia. The molecular pathways underlying disease initiation and evolution are still largely unknown. We recently demonstrated that acquired mutations in PTPN11 are a major event in JMML and occur with variable prevalence in children with other hematologic malignancies, including MDS. Here, we investigated contribution of PTPN11 mutations to adult MDS and CMML pathogenesis. Our results indicate that PTPN11 lesions might play a role in adult MDS/CMML pathogenesis but do not represent a major molecular event.


Assuntos
Leucemia Mielomonocítica Crônica/genética , Mutação , Síndromes Mielodisplásicas/genética , Proteínas Tirosina Fosfatases/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Pessoa de Meia-Idade , Proteína Tirosina Fosfatase não Receptora Tipo 11
12.
Blood ; 104(2): 307-13, 2004 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-14982869

RESUMO

SHP-2 is a protein tyrosine phosphatase functioning as signal transducer downstream to growth factor and cytokine receptors. SHP-2 is required during development, and germline mutations in PTPN11, the gene encoding SHP-2, cause Noonan syndrome. SHP-2 plays a crucial role in hematopoietic cell development. We recently demonstrated that somatic PTPN11 mutations are the most frequent lesion in juvenile myelomonocytic leukemia and are observed in a smaller percentage of children with other myeloid malignancies. Here, we report that PTPN11 lesions occur in childhood acute lymphoblastic leukemia (ALL). Mutations were observed in 23 of 317 B-cell precursor ALL cases, but not among 44 children with T-lineage ALL. In the former, lesions prevalently occurred in TEL-AML1(-) cases with CD19(+)/CD10(+)/cyIgM(-) immunophenotype. PTPN11, NRAS, and KRAS2 mutations were largely mutually exclusive and accounted for one third of common ALL cases. We also show that, among 69 children with acute myeloid leukemia, PTPN11 mutations occurred in 4 of 12 cases with acute monocytic leukemia (FAB-M5). Leukemia-associated PTPN11 mutations were missense and were predicted to result in SHP-2 gain-of-function. Our findings provide evidence for a wider role of PTPN11 lesions in leukemogenesis, but also suggest a lineage-related and differentiation stage-related contribution of these lesions to clonal expansion.


Assuntos
Mutação em Linhagem Germinativa , Leucemia Monocítica Aguda/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proteínas Tirosina Fosfatases/genética , Adolescente , Diferenciação Celular/genética , Linhagem da Célula/genética , Criança , Estudos de Coortes , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Leucemia Monocítica Aguda/epidemiologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/epidemiologia , Prevalência , Proteína Tirosina Fosfatase não Receptora Tipo 11 , Transdução de Sinais , Proteínas ras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA