Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Genet Genomics ; 299(1): 73, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39066857

RESUMO

Exploring the intricate relationships between plants and their resident microorganisms is crucial not only for developing new methods to improve disease resistance and crop yields but also for understanding their co-evolutionary dynamics. Our research delves into the role of the phyllosphere-associated microbiome, especially Actinomycetota species, in enhancing pathogen resistance in Theobroma grandiflorum, or cupuassu, an agriculturally valuable Amazonian fruit tree vulnerable to witches' broom disease caused by Moniliophthora perniciosa. While breeding resistant cupuassu genotypes is a possible solution, the capacity of the Actinomycetota phylum to produce beneficial metabolites offers an alternative approach yet to be explored in this context. Utilizing advanced long-read sequencing and metagenomic analysis, we examined Actinomycetota from the phyllosphere of a disease-resistant cupuassu genotype, identifying 11 Metagenome-Assembled Genomes across eight genera. Our comparative genomic analysis uncovered 54 Biosynthetic Gene Clusters related to antitumor, antimicrobial, and plant growth-promoting activities, alongside cutinases and type VII secretion system-associated genes. These results indicate the potential of phyllosphere-associated Actinomycetota in cupuassu for inducing resistance or antagonism against pathogens. By integrating our genomic discoveries with the existing knowledge of cupuassu's defense mechanisms, we developed a model hypothesizing the synergistic or antagonistic interactions between plant and identified Actinomycetota during plant-pathogen interactions. This model offers a framework for understanding the intricate dynamics of microbial influence on plant health. In conclusion, this study underscores the significance of the phyllosphere microbiome, particularly Actinomycetota, in the broader context of harnessing microbial interactions for plant health. These findings offer valuable insights for enhancing agricultural productivity and sustainability.


Assuntos
Doenças das Plantas , Folhas de Planta , Folhas de Planta/microbiologia , Folhas de Planta/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Resistência à Doença/genética , Microbiota/genética , Ecossistema , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Metagenômica/métodos , Metagenoma/genética , Filogenia , Brassicaceae/microbiologia , Brassicaceae/genética
2.
PLoS One ; 15(11): e0241546, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33151992

RESUMO

Here we present and analyze the complete genome of Alcaligenes faecalis strain Mc250 (Mc250), a bacterium isolated from the roots of Mimosa calodendron, an endemic plant growing in ferruginous rupestrian grasslands in Minas Gerais State, Brazil. The genome has 4,159,911 bp and 3,719 predicted protein-coding genes, in a single chromosome. Comparison of the Mc250 genome with 36 other Alcaligenes faecalis genomes revealed that there is considerable gene content variation among these strains, with the core genome representing only 39% of the protein-coding gene repertoire of Mc250. Mc250 encodes a complete denitrification pathway, a network of pathways associated with phenolic compounds degradation, and genes associated with HCN and siderophores synthesis; we also found a repertoire of genes associated with metal internalization and metabolism, sulfate/sulfonate and cysteine metabolism, oxidative stress and DNA repair. These findings reveal the genomic basis for the adaptation of this bacterium to the harsh environmental conditions from where it was isolated. Gene clusters associated with ectoine, terpene, resorcinol, and emulsan biosynthesis that can confer some competitive advantage were also found. Experimental results showed that Mc250 was able to reduce (~60%) the virulence phenotype of the plant pathogen Xanthomonas citri subsp. citri when co-inoculated in Citrus sinensis, and was able to eradicate 98% of juveniles and stabilize the hatching rate of eggs to 4% in two species of agricultural nematodes. These results reveal biotechnological potential for the Mc250 strain and warrant its further investigation as a biocontrol and plant growth-promoting bacterium.


Assuntos
Alcaligenes faecalis/genética , Citrus/microbiologia , Genoma Bacteriano , Sequenciamento Completo do Genoma , Alcaligenes faecalis/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Sequência de Bases , Citrus/parasitologia , DNA Circular/genética , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Resistência Microbiana a Medicamentos/genética , Ilhas Genômicas/genética , Ferro/metabolismo , Metais Pesados/toxicidade , Mimosa/microbiologia , Nematoides/fisiologia , Fenóis/metabolismo , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA