Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Rep Med ; 5(5): 101549, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38703767

RESUMO

There is a compelling need for approaches to predict the efficacy of immunotherapy drugs. Tumor-on-chip technology exploits microfluidics to generate 3D cell co-cultures embedded in hydrogels that recapitulate simplified tumor ecosystems. Here, we present the development and validation of lung tumor-on-chip platforms to quickly and precisely measure ex vivo the effects of immune checkpoint inhibitors on T cell-mediated cancer cell death by exploiting the power of live imaging and advanced image analysis algorithms. The integration of autologous immunosuppressive FAP+ cancer-associated fibroblasts impaired the response to anti-PD-1, indicating that tumors-on-chips are capable of recapitulating stroma-dependent mechanisms of immunotherapy resistance. For a small cohort of non-small cell lung cancer patients, we generated personalized tumors-on-chips with their autologous primary cells isolated from fresh tumor samples, and we measured the responses to anti-PD-1 treatment. These results support the power of tumor-on-chip technology in immuno-oncology research and open a path to future clinical validations.


Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias Pulmonares , Medicina de Precisão , Receptor de Morte Celular Programada 1 , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/imunologia , Medicina de Precisão/métodos , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/imunologia , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/imunologia , Dispositivos Lab-On-A-Chip , Imunoterapia/métodos , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Linhagem Celular Tumoral
2.
Nat Immunol ; 25(5): 802-819, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38684922

RESUMO

Sepsis induces immune alterations, which last for months after the resolution of illness. The effect of this immunological reprogramming on the risk of developing cancer is unclear. Here we use a national claims database to show that sepsis survivors had a lower cumulative incidence of cancers than matched nonsevere infection survivors. We identify a chemokine network released from sepsis-trained resident macrophages that triggers tissue residency of T cells via CCR2 and CXCR6 stimulations as the immune mechanism responsible for this decreased risk of de novo tumor development after sepsis cure. While nonseptic inflammation does not provoke this network, laminarin injection could therapeutically reproduce the protective sepsis effect. This chemokine network and CXCR6 tissue-resident T cell accumulation were detected in humans with sepsis and were associated with prolonged survival in humans with cancer. These findings identify a therapeutically relevant antitumor consequence of sepsis-induced trained immunity.


Assuntos
Macrófagos , Neoplasias , Sepse , Humanos , Sepse/imunologia , Macrófagos/imunologia , Feminino , Neoplasias/imunologia , Neoplasias/terapia , Masculino , Receptores CXCR6/metabolismo , Animais , Linfócitos T/imunologia , Receptores CCR2/metabolismo , Pessoa de Meia-Idade , Camundongos , Idoso , Quimiocinas/metabolismo , Adulto
3.
Front Immunol ; 14: 1205984, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37545498

RESUMO

Tumor-infiltrating lymphocytes (TIL) often include a substantial subset of CD8+ tissue-resident memory T (TRM) cells enriched in tumor-specific T cells. These TRM cells play a major role in antitumor immune response. They are identified on the basis of their expression of the CD103 (αE(CD103)ß7) and/or CD49a (α1(CD49a)ß1) integrins, and the C-type lectin CD69, which are involved in tissue residency. TRM cells express several T-cell inhibitory receptors on their surface but they nevertheless react strongly to malignant cells, exerting a strong cytotoxic function, particularly in the context of blocking interactions of PD-1 with PD-L1 on target cells. These TRM cells form stable conjugates with autologous tumor cells and interact with dendritic cells and other T cells within the tumor microenvironment to orchestrate an optimal in situ T-cell response. There is growing evidence to indicate that TGF-ß is essential for the formation and maintenance of TRM cells in the tumor, through the induction of CD103 expression on activated CD8+ T cells, and for the regulation of TRM effector functions through bidirectional integrin signaling. CD8+ TRM cells were initially described as a prognostic marker for survival in patients with various types of cancer, including ovarian, lung and breast cancers and melanoma. More recently, these tumor-resident CD8+ T cells have been shown to be a potent predictive biomarker of the response of cancer patients to immunotherapies, including therapeutic cancer vaccines and immune checkpoint blockade. In this review, we will highlight the major characteristics of tumor TRM cell populations and the possibilities for their exploitation in the design of more effective immunotherapy strategies for cancer.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Humanos , Integrina alfa1/metabolismo , Células T de Memória , Memória Imunológica , Neoplasias/metabolismo , Biomarcadores/metabolismo , Imunoterapia , Microambiente Tumoral
4.
Vaccines (Basel) ; 10(5)2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35632496

RESUMO

Immunotherapy using immune checkpoint modulators has revolutionized the oncology field, emerging as a new standard of care for multiple indications, including non-small cell lung cancer (NSCLC). However, prognosis for patients with lung cancer is still poor. Although immunotherapy is highly effective in some cases, not all patients experience significant or durable responses, and further strategies are needed to improve outcomes. Therapeutic cancer vaccines are designed to exploit the body's immune system to activate long-lasting memory against tumor cells that ensure tumor regression, with minimal toxicity. A unique feature of cancer vaccines lies in their complementary approach to boost antitumor immunity that could potentially act synergistically with immune checkpoint inhibitors (ICIs). However, single-line immunization against tumor epitopes with vaccine-based therapeutics has been disappointingly unsuccessful, to date, in lung cancer. The high level of success of several recent vaccines against SARS-CoV-2 has highlighted the evolving advances in science and technology in the vaccines field, raising hope that this strategy can be successfully applied to cancer treatments. In this review, we describe the biology behind the cancer vaccines, and discuss current evidence for the different types of therapeutic cancer vaccines in NSCLC, including their mechanisms of action, current clinical development, and future strategies.

5.
J Immunother Cancer ; 10(4)2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35418483

RESUMO

BACKGROUND: Cancer stem cells (CSC) define a population of rare malignant cells endowed with 'stemness' properties, such as self-renewing, multipotency and tumorigenicity. They are responsible for tumor initiation and progression, and could be associated with resistance to immunotherapies by negatively regulating antitumor immune response and acquiring molecular features enabling escape from CD8 T-cell immunity. However, the immunological hallmarks of human lung CSC and their potential interactions with resident memory T (TRM) cells within the tumor microenvironment have not been investigated. METHODS: We generated a non-small cell lung cancer model, including CSC line and clones, and autologous CD8+CD103+ TRM and CD8+CD103- non-TRM clones, to dissect out immune properties of CSC and their susceptibility to specific T-cell-mediated cytotoxic activity. RESULTS: Unlike their parental tumor cells, lung CSC are characterized by the initiation of an epithelial-to-mesenchymal transition program defined by upregulation of the SNAIL1 transcription factor and downregulation of phosphorylated-GSK-3ß and cell surface E-cadherin. Acquisition of a CSC profile results in partial resistance to TRM-cell-mediated cytotoxicity, which correlates with decreased surface expression of the CD103 ligand E-cadherin and human leukocyte antigen-A2-neoepitope complexes. On the other hand, CSC gained expression of intercellular adhesion molecule (ICAM)-1 and thereby sensitivity to leukocyte function-associated antigen (LFA)-1-dependent non-TRM-cell-mediated killing. Cytotoxicity is inhibited by anti-ICAM-1 and anti-major histocompatibility complex class I neutralizing antibodies further emphasizing the role of LFA-1/ICAM-1 interaction in T-cell receptor-dependent lytic function. CONCLUSION: Our data support the rational design of immunotherapeutic strategies targeting CSC to optimize their responsiveness to local CD8+CD103+ TRM cells for more efficient anticancer treatments.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Linfócitos T CD8-Positivos , Caderinas/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Memória Imunológica , Pulmão , Linfócitos do Interstício Tumoral , Células-Tronco Neoplásicas , Microambiente Tumoral
6.
Explor Target Antitumor Ther ; 3(6): 746-762, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36654823

RESUMO

Major advances in cancer treatment have emerged with the introduction of immunotherapies using blocking antibodies that target T-cell inhibitory receptors, such as programmed death-1 (PD-1) and cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4), known as immune checkpoints. However, most cancer patients do not respond to immune checkpoint blockade (ICB) therapies, suggesting the development of resistance mechanisms associated with either an insufficient number of preexisting tumor-specific T-cell precursors and/or inappropriate T-cell reactivation. To broaden clinical benefit, anti-PD-1/PD-1 ligand (PD-L1) neutralizing antibodies have been combined with therapeutic cancer vaccines based on non-mutant and/or mutant tumor antigens, to stimulate and expand tumor-specific T lymphocytes. Although these combination treatments achieve the expected goal in some patients, relapse linked to alterations in antigen presentation machinery (APM) of cancer cells often occurs leading to tumor escape from CD8 T-cell immunity. Remarkably, an alternative antigenic peptide repertoire, referred to as T-cell epitopes associated with impaired peptide processing (TEIPP), arises on these malignant cells with altered APM. TEIPP are derived from ubiquitous non-mutant self-proteins and represent a unique resource to target immune-edited tumors that have acquired resistance to cytotoxic T lymphocytes (CTLs) related to defects in transporter associated with antigen processing (TAP) and possibly also to ICB. The present review discusses tumor-associated antigens (TAAs) and mutant neoantigens and their use as targets in peptide- and RNA-based therapeutic cancer vaccines. Finally, this paper highlights TEIPP as a promising immunogenic non-mutant neoantigen candidates for active cancer immunotherapy and combination with TAA and mutant neoantigens. Combining these polyepitope cancer vaccines with ICB would broaden T-cell specificity and reinvigorate exhausted antitumor CTL, resulting in the eradication of all types of neoplastic cells, including immune-escaped subtypes.

7.
Nat Commun ; 12(1): 5209, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34471106

RESUMO

TGF-ß is secreted in the tumour microenvironment in a latent, inactive form bound to latency associated protein and activated by the integrin αV subunit. The activation of latent TGF-ß by cancer-cell-expressed αV re-shapes the tumour microenvironment, and this could affect patient responses to PD-1-targeting therapy. Here we show, using multiplex immunofluorescence staining in cohorts of anti-PD-1 and anti-PD-L1-treated lung cancer patients, that decreased expression of cancer cell αV is associated with improved immunotherapy-related, progression-free survival, as well as with an increased density of CD8+CD103+ tumour-infiltrating lymphocytes. Mechanistically, tumour αV regulates CD8 T cell recruitment, induces CD103 expression on activated CD8+ T cells and promotes their differentiation to granzyme B-producing CD103+CD69+ resident memory T cells via autocrine TGF-ß signalling. Thus, our work provides the underlying principle of targeting cancer cell αV for more efficient PD-1 checkpoint blockade therapy.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Integrina alfaV/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Antígenos CD , Antígeno B7-H1 , Linhagem Celular Tumoral , Feminino , Humanos , Imunoterapia , Cadeias alfa de Integrinas , Neoplasias Pulmonares/tratamento farmacológico , Linfócitos do Interstício Tumoral/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Microambiente Tumoral
8.
STAR Protoc ; 2(1): 100267, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33490983

RESUMO

CD103+CD8+ tumor-resident memory T cells (TRM) are important components of anti-tumor immunity. However, their role in response to cancer immunotherapy is not fully understood. The protocol describes how to isolate CD8+ T cells and autologous tumor cells from human lung tumors to study the functional activities of CD8+ T cells. Tumors are heterogeneous in terms of the quantity and quality of immune cell types, so the yield of TRM cells depends on the features of the tumor. For complete details on the use and execution of this protocol, please refer to Corgnac et al. (2020).


Assuntos
Linfócitos T CD8-Positivos/imunologia , Separação Celular , Neoplasias Pulmonares/imunologia , Linfócitos do Interstício Tumoral/imunologia , Células T de Memória/imunologia , Microambiente Tumoral/imunologia , Humanos
9.
Cell Rep Med ; 1(7): 100127, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33205076

RESUMO

Accumulation of CD103+CD8+ resident memory T (TRM) cells in human lung tumors has been associated with a favorable prognosis. However, the contribution of TRM to anti-tumor immunity and to the response to immune checkpoint blockade has not been clearly established. Using quantitative multiplex immunofluorescence on cohorts of non-small cell lung cancer patients treated with anti-PD-(L)1, we show that an increased density of CD103+CD8+ lymphocytes in immunotherapy-naive tumors is associated with greatly improved outcomes. The density of CD103+CD8+ cells increases during immunotherapy in most responder, but not in non-responder, patients. CD103+CD8+ cells co-express CD49a and CD69 and display a molecular profile characterized by the expression of PD-1 and CD39. CD103+CD8+ tumor TRM, but not CD103-CD8+ tumor-infiltrating counterparts, express Aiolos, phosphorylated STAT-3, and IL-17; demonstrate enhanced proliferation and cytotoxicity toward autologous cancer cells; and frequently display oligoclonal expansion of TCR-ß clonotypes. These results explain why CD103+CD8+ TRM are associated with better outcomes in anti-PD-(L)1-treated patients.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Linfócitos T CD8-Positivos/imunologia , Carcinoma Pulmonar de Células não Pequenas/imunologia , Neoplasias Pulmonares/imunologia , Linfócitos do Interstício Tumoral/imunologia , Receptor de Morte Celular Programada 1/imunologia , Antígenos CD/genética , Antígenos CD/imunologia , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/genética , Antígeno B7-H1/imunologia , Antígenos CD8/genética , Antígenos CD8/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/patologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Citotoxicidade Imunológica/efeitos dos fármacos , Regulação da Expressão Gênica , Humanos , Fator de Transcrição Ikaros/genética , Fator de Transcrição Ikaros/imunologia , Memória Imunológica , Imunoterapia/métodos , Cadeias alfa de Integrinas/genética , Cadeias alfa de Integrinas/imunologia , Interleucina-17/genética , Interleucina-17/imunologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidade , Ativação Linfocitária/efeitos dos fármacos , Contagem de Linfócitos , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/patologia , Fosforilação , Prognóstico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/genética , Estudos Retrospectivos , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/imunologia , Transdução de Sinais , Análise de Sobrevida , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
10.
Methods Enzymol ; 632: 521-543, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32000913

RESUMO

Dendritic cells (DCs) are professional antigen-presenting cells, which are optimal for the priming of a T cell response against pathogens and tumors. Therefore, many efforts are made to develop therapeutic cancer vaccines which preferentially target the antigen to DC subsets. To this aim, we developed two types of recombinant fusion proteins, which favor antigen delivery to pro-inflammatory DCs as well as the crosstalk between specialized subpopulations of DCs. The first approach combines peptide/CpG vaccination with the recruitment of iNKT cells to the tumor site via CD1d-antitumor scFv fusion proteins. The second approach is targeting the tumor antigen to cross-presenting Xcr1+ DCs via a fusion protein made of Xcl1 fused to a synthetic long peptide followed by an IgG1 Fc fragment. Both strategies allow a potent tumor-specific CD8 T cell response associated with tumor regression or tumor growth delay depending on the model. In the case of iNKT cell activation, the strategy relies on a strong IL-12 release by splenic DCs, while in the second case, the T cell response is strictly dependent on the presence of Xcr1+ cross-presenting DCs.


Assuntos
Vacinas Anticâncer/uso terapêutico , Células Dendríticas/imunologia , Neoplasias/terapia , Animais , Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/imunologia , Apresentação Cruzada , Células HEK293 , Humanos , Células Matadoras Naturais/imunologia , Camundongos Endogâmicos C57BL , Neoplasias/imunologia , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/uso terapêutico
11.
Cancer Immunol Res ; 7(11): 1789-1802, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31488404

RESUMO

Immune resistance may arise from both genetic instability and tumor heterogeneity. Microenvironmental stresses such as hypoxia and various resistance mechanisms promote carcinoma cell plasticity. AXL, a member of the TAM (Tyro3, Axl, and Mer) receptor tyrosine kinase family, is widely expressed in human cancers and increasingly recognized for its role in cell plasticity and drug resistance. To investigate mechanisms of immune resistance, we studied multiple human lung cancer clones derived from a model of hypoxia-induced tumor plasticity that exhibited mesenchymal or epithelial features. We demonstrate that AXL expression is increased in mesenchymal lung cancer clones. Expression of AXL in the cells correlated with increased cancer cell-intrinsic resistance to both natural killer (NK)- and cytotoxic T lymphocyte (CTL)-mediated killing. A small-molecule targeting AXL sensitized mesenchymal lung cancer cells to cytotoxic lymphocyte-mediated killing. Mechanistically, we showed that attenuation of AXL-dependent immune resistance involved a molecular network comprising NF-κB activation, increased ICAM1 expression, and upregulation of ULBP1 expression coupled with MAPK inhibition. Higher ICAM1 and ULBP1 tumor expression correlated with improved patient survival in two non-small cell lung cancer (NSCLC) cohorts. These results reveal an AXL-mediated immune-escape regulatory pathway, suggest AXL as a candidate biomarker for tumor resistance to NK and CTL immunity, and support AXL targeting to optimize immune response in NSCLC.


Assuntos
Células Matadoras Naturais/imunologia , Neoplasias Pulmonares/imunologia , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Linfócitos T Citotóxicos/imunologia , Evasão Tumoral/efeitos dos fármacos , Antineoplásicos/farmacologia , Citotoxicidade Imunológica , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/imunologia , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/imunologia , Transdução de Sinais/efeitos dos fármacos , Análise de Sobrevida , Células Tumorais Cultivadas , Receptor Tirosina Quinase Axl
12.
Nat Commun ; 10(1): 3345, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31350404

RESUMO

Neuropilin-1 (Nrp-1) is a marker for murine CD4+FoxP3+ regulatory T (Treg) cells, a subset of human CD4+ Treg cells, and a population of CD8+ T cells infiltrating certain solid tumours. However, whether Nrp-1 regulates tumour-specific CD8 T-cell responses is still unclear. Here we show that Nrp-1 defines a subset of CD8+ T cells displaying PD-1hi status and infiltrating human lung cancer. Interaction of Nrp-1 with its ligand semaphorin-3A inhibits migration and tumour-specific lytic function of cytotoxic T lymphocytes. In vivo, Nrp-1+PD-1hi CD8+ tumour-infiltrating lymphocytes (TIL) in B16F10 melanoma are enriched for tumour-reactive T cells exhibiting an exhausted state, expressing Tim-3, LAG-3 and CTLA-4 inhibitory receptors. Anti-Nrp-1 neutralising antibodies enhance the migration and cytotoxicity of Nrp-1+PD-1hi CD8+ TIL ex vivo, while in vivo immunotherapeutic blockade of Nrp-1 synergises with anti-PD-1 to enhance CD8+ T-cell proliferation, cytotoxicity and tumour control. Thus, Nrp-1 could be a target for developing combined immunotherapies.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Imunoterapia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/terapia , Neuropilina-1/imunologia , Animais , Movimento Celular , Feminino , Humanos , Imunidade Celular , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/fisiopatologia , Linfócitos do Interstício Tumoral/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Neuropilina-1/genética , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/imunologia , Semaforina-3A/imunologia , Linfócitos T Citotóxicos/citologia , Linfócitos T Citotóxicos/imunologia
13.
Nat Commun ; 9(1): 5097, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30504837

RESUMO

Tumours often evade CD8 T-cell immunity by downregulating TAP. T-cell epitopes associated with impaired peptide processing are immunogenic non-mutated neoantigens that emerge during tumour immune evasion. The preprocalcitonin (ppCT)16-25 neoepitope belongs to this category of antigens. Here we show that most human lung tumours display altered expression of TAP and frequently express ppCT self-antigen. We also show that ppCT includes HLA-A2-restricted epitopes that are processed by TAP-independent and -dependent pathways. Processing occurs in either the endoplasmic reticulum, by signal peptidase and signal peptide peptidase, or in the cytosol after release of a signal peptide precursor or retrotranslocation of a procalcitonin substrate by endoplasmic-reticulum-associated degradation. Remarkably, ppCT peptide-based immunotherapy induces efficient T-cell responses toward antigen processing and presenting machinery-impaired tumours transplanted into HLA-A*0201-transgenic mice and in NOD-scid-Il2rγnull mice adoptively transferred with human PBMC. Thus, ppCT-specific T lymphocytes are promising effectors for treatment of tumours that have escaped immune recognition.


Assuntos
Calcitonina/metabolismo , Epitopos de Linfócito T/metabolismo , Leucócitos Mononucleares/metabolismo , Precursores de Proteínas/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Antígenos HLA-A/imunologia , Antígenos HLA-A/metabolismo , Voluntários Saudáveis , Humanos , Técnicas In Vitro , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Evasão Tumoral/imunologia , Evasão Tumoral/fisiologia
14.
J Immunother Cancer ; 6(1): 87, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30180905

RESUMO

CD8+ T lymphocytes are the major anti-tumor effector cells. Most cancer immunotherapeutic approaches seek to amplify cytotoxic T lymphocytes (CTL) specific to malignant cells. A recently identified subpopulation of memory CD8+ T cells, named tissue-resident memory T (TRM) cells, persists in peripheral tissues and does not recirculate. This T-cell subset is considered an independent memory T-cell lineage with a specific profile of transcription factors, including Runx3+, Notch+, Hobit+, Blimp1+, BATF+, AHR+, EOMESneg and Tbetlow. It is defined by expression of CD103 (αE(CD103)ß7) and CD49a (VLA-1 or α1ß1) integrins and C-type lectin CD69, which are most likely involved in retention of TRM cells in non-lymphoid tissues, including solid tumors. CD103 binds to the epithelial cell marker E-cadherin, thereby favoring the location and retention of TRM in epithelial tumor regions in close contact with malignant cells. The CD103-E-cadherin interaction is required for polarized exocytosis of lytic granules, in particular, when ICAM-1 expression on cancer cells is missing, leading to target cell death. TRM cells also express high levels of granzyme B, IFNγ and TNFα, supporting their cytotoxic features. Moreover, the local route of immunization targeting tissue dendritic cells (DC), and the presence of environmental factors (i.e. TGF-ß, IL-33 and IL-15), promote differentiation of this T-cell subtype. In both spontaneous tumor models and engrafted tumors, natural TRM cells or cancer-vaccine-induced TRM directly control tumor growth. In line with these results, TRM infiltration into various human cancers, including lung cancer, are correlated with better clinical outcome in both univariate and multivariate analyses independently of CD8+ T cells. TRM cells also predominantly express checkpoint receptors such as PD-1, CTLA-4 and Tim-3. Blockade of PD-1 with neutralizing antibodies on TRM cells isolated from human lung cancer promotes cytolytic activity toward autologous tumor cells. Thus, TRM cells appear to represent important components in tumor immune surveillance. Their induction by cancer vaccines or other immunotherapeutic approaches may be critical for the success of these treatments. Several arguments, such as their close contact with tumor cells, dominant expression of checkpoint receptors and their recognition of cancer cells, strongly suggest that they may be involved in the success of immune checkpoint inhibitors in various cancers.


Assuntos
Imunidade , Memória Imunológica , Neoplasias/imunologia , Subpopulações de Linfócitos T/imunologia , Animais , Biomarcadores , Humanos , Vigilância Imunológica , Imunofenotipagem , Imunoterapia , Ativação Linfocitária/imunologia , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/terapia , Fenótipo , Prognóstico , Receptores Imunológicos/metabolismo , Subpopulações de Linfócitos T/metabolismo , Resultado do Tratamento
15.
Front Immunol ; 9: 1904, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30158938

RESUMO

Cancer immunotherapy is aimed at stimulating tumor-specific cytotoxic T lymphocytes and their subsequent trafficking so that they may reach, and persist in, the tumor microenvironment, recognizing and eliminating malignant target cells. Thus, characterization of the phenotype and effector functions of CD8+ T lymphocytes infiltrating human solid tumors is essential for better understanding and manipulating the local antitumor immune response, and for defining their contribution to the success of current cancer immunotherapy approaches. Accumulating evidence indicates that a substantial subpopulation of CD3+CD8+ tumor-infiltrating lymphocytes are tissue resident memory T (TRM) cells, and is emerging as an activated tumor-specific T-cell subset. These TRM cells accumulate in various human cancer tissues, including non-small-cell lung carcinoma (NSCLC), ovarian and breast cancers, and are defined by expression of CD103 [αE(CD103)ß7] and/or CD49a [α1(CD49a)ß1] integrins, along with C-type lectin CD69, which most likely contribute to their residency characteristic. CD103 binds to the epithelial cell marker E-cadherin, thereby promoting retention of TRM cells in epithelial tumor islets and maturation of cytotoxic immune synapse with specific cancer cells, resulting in T-cell receptor (TCR)-dependent target cell killing. Moreover, CD103 integrin triggers bidirectional signaling events that cooperate with TCR signals to enable T-cell migration and optimal cytokine production. Remarkably, TRM cells infiltrating human NSCLC tumors also express inhibitory receptors such as programmed cell death-1, the neutralization of which, with blocking antibodies, enhances CD103-dependent TCR-mediated cytotoxicity toward autologous cancer cells. Thus, accumulation of TRM cells at the tumor site explains the more favorable clinical outcome, and might be associated with the success of immune checkpoint blockade in a fraction of cancer patients.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Imunidade , Memória Imunológica , Neoplasias/imunologia , Neoplasias/metabolismo , Animais , Antígenos CD/metabolismo , Biomarcadores , Citotoxicidade Imunológica , Humanos , Cadeias alfa de Integrinas/metabolismo , Ativação Linfocitária/imunologia , Linfócitos do Interstício Tumoral , Neoplasias/patologia , Neoplasias/terapia , Especificidade de Órgãos/imunologia , Prognóstico , Transdução de Sinais , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Microambiente Tumoral
17.
Front Immunol ; 9: 14, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29403496

RESUMO

Recent advances in cancer treatment have emerged from new immunotherapies targeting T-cell inhibitory receptors, including cytotoxic T-lymphocyte associated antigen (CTLA)-4 and programmed cell death (PD)-1. In this context, anti-CTLA-4 and anti-PD-1 monoclonal antibodies have demonstrated survival benefits in numerous cancers, including melanoma and non-small-cell lung carcinoma. PD-1-expressing CD8+ T lymphocytes appear to play a major role in the response to these immune checkpoint inhibitors (ICI). Cytotoxic T lymphocytes (CTL) eliminate malignant cells through recognition by the T-cell receptor (TCR) of specific antigenic peptides presented on the surface of cancer cells by major histocompatibility complex class I/beta-2-microglobulin complexes, and through killing of target cells, mainly by releasing the content of secretory lysosomes containing perforin and granzyme B. T-cell adhesion molecules and, in particular, lymphocyte-function-associated antigen-1 and CD103 integrins, and their cognate ligands, respectively, intercellular adhesion molecule 1 and E-cadherin, on target cells, are involved in strengthening the interaction between CTL and tumor cells. Tumor-specific CTL have been isolated from tumor-infiltrating lymphocytes and peripheral blood lymphocytes (PBL) of patients with varied cancers. TCRß-chain gene usage indicated that CTL identified in vitro selectively expanded in vivo at the tumor site compared to autologous PBL. Moreover, functional studies indicated that these CTL mediate human leukocyte antigen class I-restricted cytotoxic activity toward autologous tumor cells. Several of them recognize truly tumor-specific antigens encoded by mutated genes, also known as neoantigens, which likely play a key role in antitumor CD8 T-cell immunity. Accordingly, it has been shown that the presence of T lymphocytes directed toward tumor neoantigens is associated with patient response to immunotherapies, including ICI, adoptive cell transfer, and dendritic cell-based vaccines. These tumor-specific mutation-derived antigens open up new perspectives for development of effective second-generation therapeutic cancer vaccines.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/terapia , Citotoxicidade Imunológica/imunologia , Neoplasias Pulmonares/terapia , Linfócitos do Interstício Tumoral/transplante , Melanoma/terapia , Linfócitos T Citotóxicos/transplante , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Antígeno CTLA-4/antagonistas & inibidores , Antígeno CTLA-4/imunologia , Humanos , Imunoterapia Adotiva , Linfócitos do Interstício Tumoral/imunologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T Citotóxicos/imunologia
18.
Cancer Res ; 77(24): 7072-7082, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29021139

RESUMO

CD8+/CD103+ tissue-resident memory T cells (TRM cells) accumulate in several human solid tumors, where they have been associated with a favorable prognosis. However, the role of CD103, the α subunit of the integrin αEß7 (also known as CD103), in the retention and functions of these TRM is undefined. In this report, we investigated the role of CD103 cytoplasmic domain and the focal adhesion-associated protein paxillin (Pxn) in downstream signaling and functional activities triggered through αE/CD103 chain. Binding to immobilized recombinant (r)E-cadherin-Fc of CD103 integrin expressed on tumor-specific CTL clones promotes phosphorylation of Pxn and Pyk2 and binding of Pxn to the αE/CD103 subunit tail. Inhibition of Pxn phosphorylation by the Src inhibitor saracatinib or its knockdown via shRNA dramatically altered adhesion and spreading of freshly isolated CD8+/CD103+ lung tumor-infiltrating lymphocytes and CD103+ tumor-specific CTL clones. Inhibition of Pxn phosphorylation with saracatinib in these CTL clones also severely compromised their functional activities toward autologous tumor cells. Using Jurkat T cells as a model to study CD103 integrin activation, we demonstrated a key role of serine residue S1163 of the αE chain intracellular domain in polarization of CD103 and recruitment of lysosomes and Pxn at the contact zone of T lymphocytes with rE-cadherin-Fc-coated beads. Overall, our results show how Pxn binding to the CD103 cytoplasmic tail triggers αEß7 integrin outside-in signaling that promotes CD8+ T-cell migratory behavior and effector functions. These results also explain the more favorable prognosis associated with retention of TRM cells in the tumor microenvironment. Cancer Res; 77(24); 7072-82. ©2017 AACR.


Assuntos
Antígenos CD/metabolismo , Linfócitos T CD8-Positivos , Adesão Celular , Citotoxicidade Imunológica/fisiologia , Cadeias alfa de Integrinas/metabolismo , Linfócitos do Interstício Tumoral , Paxilina/metabolismo , Antígenos CD/química , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Citoplasma/metabolismo , Células HEK293 , Humanos , Memória Imunológica/fisiologia , Cadeias alfa de Integrinas/química , Células Jurkat , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Microambiente Tumoral/imunologia
19.
Oncoimmunology ; 6(9): e1339855, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28932640

RESUMO

Vaccines designed to abrogate the tolerance of tumor self-antigens and amplify cytotoxic CD8+ T cells (CTLs) have promise for the treatment of cancer. Type I natural killer (NKT) cells have attracted considerable interest in the cancer therapy field. In the current study, we have exploited the unique ability of NKT cells to serve as T-helper cells to license dendritic cells (DCs) for cross priming with the aim to generate efficient CTL antitumor responses. To this end, we designed a nanoparticle-based vaccine to target cross-priming DCs via the Clec9a endocytic pathway. Our results showed for the first time that simultaneous co-delivery of the NKT agonist α-galactosylceramide and tumor self-antigens (Trp2 and gp100) to CD8α+ DCs promotes strong antitumor responses in prophylactic and therapeutic settings (advanced solid tumor model in the mouse). We attributed the vaccine's therapeutic effects to NKT cells (but not to T-helper lymphocytes) and CD8+ T cells. Efficacy was correlated with an elevated ratio between tumor antigen-specific CD8+ T cells and regulatory CD4+ T lymphocytes within the tumor. The nanoparticle-based vaccine actively targeted human CLEC9A-expressing BDCA3+ DCs - the equivalent of murine cross-priming CD8α+ DCs - and induced a strong expansion of effector memory tumor self-antigen (Melan -A)-specific CD8+ T cells from peripheral blood mononuclear cells sourced from healthy donors and melanoma patients. Together, our result shed light on novel therapeutic approaches for controlling tumor development.

20.
J Immunother Cancer ; 2(1): 39, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25426294

RESUMO

BACKGROUND: Therapeutic cancer vaccines aim to boost the natural immunity against transformed cancer cells, and a series of adjuvants and co-stimulatory molecules have been proposed to enhance the immune response against weak self-antigens expressed on cancer cells. For instance, a peptide/CpG-based cancer vaccine has been evaluated in several clinical trials and was shown in pre-clinical studies to favor the expansion of effector T versus Tregs cells, resulting in a potent antitumor activity, as compared to other TLR ligands. Alternatively, the adjuvant activity of CD1d-restricted invariant NKT cells (iNKT) on the innate and adaptive immunity is well demonstrated, and several CD1d glycolipid ligands are under pre-clinical and clinical evaluation. Importantly, additive or even synergistic effects have been shown upon combined CD1d/NKT agonists and TLR ligands. The aim of the present study is to combine the activation and tumor targeting of activated iNKT, NK and T cells. METHODS: Activation and tumor targeting of iNKT cells via recombinant α-galactosylceramide (αGC)-loaded CD1d-anti-HER2 fusion protein (CD1d-antitumor) is combined or not with OVA peptide/CpG vaccine. Circulating and intratumoral NK and H-2Kb/OVA-specific CD8 responses are monitored, as well as the state of activation of dendritic cells (DC) with regard to activation markers and IL-12 secretion. The resulting antitumor therapy is tested against established tumor grafts of B16 melanoma cells expressing human HER2 and ovalbumin. RESULTS: The combined CD1d/iNKT antitumor therapy and CpG/peptide-based immunization leads to optimized expansion of NK and OVA-specific CD8 T cells (CTLs), likely resulting from the maturation of highly pro-inflammatory DCs as seen by a synergistic increase in serum IL-12. The enhanced innate and adaptive immune responses result in higher tumor inhibition that correlates with increased numbers of OVA-specific CTLs at the tumor site. Antibody-mediated depletion experiments further demonstrate that in this context, CTLs rather than NK cells are essential for the enhanced tumor inhibition. CONCLUSIONS: Altogether, our study in mice demonstrates that αGC/CD1d-antitumor fusion protein greatly increases the efficacy of a therapeutic CpG-based cancer vaccine, first as an adjuvant during T cell priming and second, as a therapeutic agent to redirect immune responses to the tumor site.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA