Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cells Tissues Organs ; 212(1): 21-31, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35168244

RESUMO

Cell-derived matrices are useful tools for studying the extracellular matrix (ECM) of different cell types and testing the effects on cell migration or wound repair. These matrices typically are generated using extended culture with ascorbic acid to boost ECM production. Applying this technique to cancer cell cultures could advance the study of cancer ECM and its effects on recruitment and training of the tumor microenvironment, but ascorbic acid is potently cytotoxic to cancer cells. Macromolecular crowding (MMC) agents can also be added to increase matrix deposition based on the excluded volume principle. We report the use of MMC alone as an effective strategy to generate brain cancer cell-derived matrices for downstream analyses and cell migration studies. We cultured the mouse glioblastoma cell line GL261 for 1 week in the presence of three previously reported MMC agents (carrageenan, Ficoll 70/400, and hyaluronic acid). We measured the resulting deposition of collagens and sulfated glycosaminoglycans using quantitative assays, as well as other matrix components by immunostaining. Both carrageenan and Ficoll promoted significantly more accumulation of total collagen content, sulfated glycosaminoglycan content, and fibronectin staining. Only Ficoll, however, also demonstrated a significant increase in collagen I staining. The results were more variable in 3D spheroid culture. We focused on Ficoll MMC matrices, which were isolated using the small molecule Raptinal to induce cancer cell apoptosis and matrix decellularization. The cancer cell-derived matrix promoted significantly faster migration of human astrocytes in a scratch wound assay, which may be explained by focal adhesion morphology and an increase in cellular metabolic activity. Ultimately, these data show MMC culture is a useful technique to generate cancer cell-derived matrices and study the effects on stromal cell migration related to wound repair.


Assuntos
Astrócitos , Neoplasias Encefálicas , Animais , Camundongos , Humanos , Ficoll/metabolismo , Astrócitos/metabolismo , Carragenina/metabolismo , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Movimento Celular , Neoplasias Encefálicas/metabolismo , Substâncias Macromoleculares/metabolismo , Microambiente Tumoral
2.
Cells Tissues Organs ; 212(6): 512-522, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36030771

RESUMO

Peripheral nerve injury results in loss of motor and sensory function distal to the nerve injury and is often permanent in nerve gaps longer than 5 cm. Autologous nerve grafts (nerve autografts) utilize patients' own nerve tissue from another part of their body to repair the defect and are the gold standard in care. However, there is a limited autologous tissue supply, size mismatch between donor nerve and injured nerve, and morbidity at the site of nerve donation. Decellularized cadaveric nerve tissue alleviates some of these limitations and has demonstrated success clinically. We previously developed an alternative apoptosis-assisted decellularization process for nerve tissue. This new process may result in an ideal scaffold for peripheral nerve regeneration by gently removing cells and antigens while preserving delicate topographical cues. In addition, the apoptosis-assisted process requires less active processing time and is inexpensive. This study examines the utility of apoptosis-decellularized peripheral nerve scaffolds compared to detergent-decellularized peripheral nerve scaffolds and isograft controls in a rat nerve gap model. Results indicate that, at 8 weeks post-injury, apoptosis-decellularized peripheral nerve scaffolds perform similarly to detergent-decellularized and isograft controls in both functional (muscle weight recovery, gait analysis) and histological measures (neurofilament staining, macrophage infiltration). These new apoptosis-decellularized scaffolds hold great promise to provide a less expensive scaffold for nerve injury repair, with the potential to improve nerve regeneration and functional outcomes compared to current detergent-decellularized scaffolds.


Assuntos
Detergentes , Tecido Nervoso , Humanos , Ratos , Animais , Nervos Periféricos , Macrófagos , Apoptose , Regeneração Nervosa/fisiologia , Alicerces Teciduais , Engenharia Tecidual/métodos , Nervo Isquiático/patologia
3.
Front Oncol ; 12: 801764, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35372032

RESUMO

Chemotherapy has been used to inhibit cancer growth for decades, but emerging evidence shows it can affect the tumor stroma, unintentionally promoting cancer malignancy. After treatment of primary tumors, remaining drugs drain via lymphatics. Though all drugs interact with the lymphatics, we know little of their impact on them. Here, we show a previously unknown effect of platinums, a widely used class of chemotherapeutics, to directly induce systemic lymphangiogenesis and activation. These changes are dose-dependent, long-lasting, and occur in healthy and cancerous tissue in multiple mouse models of breast cancer. We found similar effects in human ovarian and breast cancer patients whose treatment regimens included platinums. Carboplatin treatment of healthy mice prior to mammary tumor inoculation increased cancer metastasis as compared to no pre-treatment. These platinum-induced phenomena could be blocked by VEGFR3 inhibition. These findings have implications for cancer patients receiving platinums and may support the inclusion of anti-VEGFR3 therapy into treatment regimens or differential design of treatment regimens to alter these potential effects.

4.
Brain Res Bull ; 174: 72-83, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34029679

RESUMO

There are over 1,000 described neurological and neurodegenerative disorders affecting nearly 100 million Americans - roughly one third of the U.S. population. Collectively, treatment of neurological conditions is estimated to cost $800 billion every year. Lowering this societal burden will require developing better model systems in which to study these diverse disorders. Microphysiological systems are promising tools for modeling healthy and diseased neural tissues to study mechanisms and treatment of neuropathology. One major benefit of microphysiological systems is the ability to incorporate biophysical forces, namely the forces derived from biological fluid flow. Fluid flow in the central nervous system (CNS) is a complex but important element of physiology, and pathologies as diverse as traumatic or ischemic injury, cancer, neurodegenerative disease, and natural aging have all been found to alter flow pathways. In this review, we summarize recent advances in three-dimensional microphysiological systems for studying the biology and therapy of CNS disorders and highlight the ability and growing need to incorporate biological fluid flow in these miniaturized model systems.


Assuntos
Líquidos Corporais/fisiologia , Doenças do Sistema Nervoso Central/fisiopatologia , Sistema Nervoso Central/fisiologia , Fisiologia/métodos , Animais , Sistema Nervoso Central/fisiopatologia , Humanos
5.
Philos Trans R Soc Lond B Biol Sci ; 374(1779): 20180226, 2019 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-31431182

RESUMO

Bioengineers have built models of the tumour microenvironment (TME) in which to study cell-cell interactions, mechanisms of cancer growth and metastasis, and to test new therapies. These models allow researchers to culture cells in conditions that include features of the in vivo TME implicated in regulating cancer progression, such as extracellular matrix (ECM) stiffness, integrin binding to the ECM, immune and stromal cells, growth factor and cytokine depots, and a three-dimensional geometry more representative of the in vivo TME than tissue culture polystyrene (TCPS). These biomaterials could be particularly useful for drug screening applications to make better predictions of efficacy, offering better translation to preclinical models and clinical trials. However, it can be challenging to compare drug response reports across different biomaterial platforms in the current literature. This is, in part, a result of inconsistent reporting and improper use of drug response metrics, and vast differences in cell growth rates across a large variety of biomaterial designs. This study attempts to clarify the definitions of drug response measurements used in the field, and presents examples in which these measurements can and cannot be applied. We suggest as best practice to measure the growth rate of cells in the absence of drug, and follow our 'decision tree' when reporting drug response metrics. This article is part of a discussion meeting issue 'Forces in cancer: interdisciplinary approaches in tumour mechanobiology'.


Assuntos
Antineoplásicos/farmacologia , Materiais Biocompatíveis/metabolismo , Matriz Extracelular/efeitos dos fármacos , Neoplasias/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Benchmarking , Comunicação Celular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Humanos
6.
Sci Rep ; 8(1): 17057, 2018 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-30451884

RESUMO

Glioblastoma is the most common and malignant form of brain cancer. Its invasive nature limits treatment efficacy and promotes inevitable recurrence. Previous in vitro studies showed that interstitial fluid flow, a factor characteristically increased in cancer, increases glioma cell invasion through CXCR4-CXCL12 signaling. It is currently unknown if these effects translate in vivo. We used the therapeutic technique of convection enhanced delivery (CED) to test if convective flow alters glioma invasion in a syngeneic GL261 mouse model of glioblastoma. The GL261 cell line was flow responsive in vitro, dependent upon CXCR4 and CXCL12. Additionally, transplanting GL261 intracranially increased the populations of CXCR4+ and double positive cells versus 3D culture. We showed that inducing convective flow within implanted tumors indeed increased invasion over untreated controls, and administering the CXCR4 antagonist AMD3100 (5 mg/kg) effectively eliminated this response. These data confirm that glioma invasion is stimulated by convective flow in vivo and depends on CXCR4 signaling. We also showed that expression of CXCR4 and CXCL12 is increased in patients having received standard therapy, when CED might be elected. Hence, targeting flow-stimulated invasion may prove beneficial as a second line of therapy, particularly in patients chosen to receive treatment by convection enhanced delivery.


Assuntos
Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Invasividade Neoplásica , Receptores CXCR4/metabolismo , Animais , Neoplasias Encefálicas/metabolismo , Quimiocina CXCL12/metabolismo , Modelos Animais de Doenças , Feminino , Glioblastoma/metabolismo , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade
7.
Front Mater ; 52018 May.
Artigo em Inglês | MEDLINE | ID: mdl-30911536

RESUMO

Glioblastoma (GBM) is the most common and malignant form of brain cancer. Even with aggressive standard of care, GBM almost always recurs because its diffuse, infiltrative nature makes these tumors difficult to treat. The use of biomaterials is one strategy that has been, and is being, employed to study and overcome recurrence. Biomaterials have been used in GBM in two ways: in vitro as mediums in which to model the tumor microenvironment, and in vivo to sustain release of cytotoxic therapeutics. In vitro systems are a useful platform for studying the effects of drugs and tissue-level effectors on tumor cells in a physiologically relevant context. These systems have aided examination of how glioma cells respond to a variety of natural, synthetic, and semi-synthetic biomaterials with varying substrate properties, biochemical factor presentations, and non-malignant parenchymal cell compositions in both 2D and 3D environments. The current in vivo paradigm is completely different, however. Polymeric implants are simply used to line the post-surgical resection cavities and deliver secondary therapies, offering moderate impacts on survival. Instead, perhaps we can use the data generated from in vitro systems to design novel biomaterial-based treatments for GBM akin to a tissue engineering approach. Here we offer our perspective on the topic, summarizing how biomaterials have been used to identify facets of glioma biology in vitro and discussing the elements that show promise for translating these systems in vivo as new therapies for GBM.

8.
Macromol Biosci ; 15(11): 1490-6, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26033953

RESUMO

Stimuli-responsive materials enabling the behavior of the cells that reside within them to be controlled are vital for the development of instructive tissue scaffolds for tissue engineering. Herein, we describe the preparation of conductive silk foam-based bone tissue scaffolds that enable the electrical stimulation of human mesenchymal stem cells (HMSCs) to enhance their differentiation toward osteogenic outcomes.


Assuntos
Substitutos Ósseos/química , Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo , Osteogênese , Seda/química , Alicerces Teciduais/química , Humanos , Células-Tronco Mesenquimais/citologia
9.
Bioengineering (Basel) ; 2(1): 15-34, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-28955011

RESUMO

Tissues in the body are hierarchically structured composite materials with tissue-specific chemical and topographical properties. Here we report the preparation of tissue scaffolds with macroscopic pores generated via the dissolution of a sacrificial supramolecular polymer-based crystal template (urea) from a biodegradable polymer-based scaffold (polycaprolactone, PCL). Furthermore, we report a method of aligning the supramolecular polymer-based crystals within the PCL, and that the dissolution of the sacrificial urea yields scaffolds with macroscopic pores that are aligned over long, clinically-relevant distances (i.e., centimeter scale). The pores act as topographical cues to which rat Schwann cells respond by aligning with the long axis of the pores. Generation of an interpenetrating network of polypyrrole (PPy) and poly(styrene sulfonate) (PSS) in the scaffolds yields electroactive tissue scaffolds that allow the electrical stimulation of Schwann cells cultured on the scaffolds which increases the production of nerve growth factor (NGF).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA