Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Quant Imaging Med Surg ; 14(6): 3778-3788, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38846290

RESUMO

Background: While current preoperative and postoperative assessment of the fractured and surgically reconstructed calcaneus relies on computed tomography (CT)-imaging, there are no established methods to quantify calcaneus morphology on CT-images. This study aims to develop a semi-automated method for morphological measurements of the calcaneus on three-dimensional (3D) models derived from CT-imaging. Methods: Using CT data, 3D models were created from healthy, fractured, and surgically reconstructed calcanei. Böhler's angle (BA) and Critical angle of Gissane (CAG) were measured on conventional lateral radiographs and corresponding 3D CT reconstructions using a novel point-based method with semi-automatic landmark placement by three observers. Intraobserver and interobserver reliability scores were calculated using intra-class correlation coefficient (ICC). In addition, consensus among observers was calculated for a maximal allowable discrepancy of 5 and 10 degrees for both methods. Results: Imaging data from 119 feet were obtained (40 healthy, 39 fractured, 40 reconstructed). Semi-automated measurements on 3D models of BA and CAG showed excellent reliability (ICC: 0.87-1.00). The manual measurements on conventional radiographs had a poor-to-excellent reliability (ICC: 0.22-0.96). In addition, the percentage of consensus among observers was much higher for the 3D method when compared to conventional two-dimensional (2D) measurements. Conclusions: The proposed method enables reliable and reproducible quantification of calcaneus morphology in 3D models of healthy, fractured and reconstructed calcanei.

2.
J Nucl Med ; 64(12): 1965-1971, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37770109

RESUMO

Poly(adenosine diphosphate ribose) polymerase (PARP) has emerged as an effective therapeutic strategy against cancer that targets the DNA damage repair enzyme. PARP-targeting compounds radiolabeled with an Auger electron-emitting radionuclide can be trapped close to damaged DNA in tumor tissue, where high ionizing potential and short range lead Auger electrons to kill cancer cells through the creation of complex DNA damage, with minimal damage to surrounding normal tissue. Here, we report on [123I]CC1, an 123I-labeled PARP inhibitor for radioligand therapy of cancer. Methods: Copper-mediated 123I iododeboronation of a boronic pinacol ester precursor afforded [123I]CC1. The level and specificity of cell uptake and the therapeutic efficacy of [123I]CC1 were determined in human breast carcinoma, pancreatic adenocarcinoma, and glioblastoma cells. Tumor uptake and tumor growth inhibition of [123I]CC1 were assessed in mice bearing human cancer xenografts (MDA-MB-231, PSN1, and U87MG). Results: In vitro and in vivo studies showed selective uptake of [123I]CC1 in all models. Significantly reduced clonogenicity, a proxy for tumor growth inhibition by ionizing radiation in vivo, was observed in vitro after treatment with as little as 10 Bq [123I]CC1. Biodistribution at 1 h after intravenous administration showed PSN1 tumor xenograft uptake of 0.9 ± 0.06 percentage injected dose per gram of tissue. Intravenous administration of a relatively low amount of [123I]CC1 (3 MBq) was able to significantly inhibit PSN1 xenograft tumor growth but was less effective in xenografts that expressed less PARP. [123I]CC1 did not cause significant toxicity to normal tissues. Conclusion: Taken together, these results show the potential of [123I]CC1 as a radioligand therapy for PARP-expressing cancers.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Humanos , Animais , Camundongos , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Compostos Radiofarmacêuticos/uso terapêutico , Elétrons , Distribuição Tecidual , Neoplasias Pancreáticas/tratamento farmacológico , Linhagem Celular Tumoral
3.
J Nucl Med ; 64(9): 1344-1351, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37591544

RESUMO

Auger electron (AE) radiopharmaceutical therapy (RPT) may have the same therapeutic efficacy as α-particles for oncologic small disease, with lower risks of normal-tissue toxicity. The seeds of using AE emitters for RPT were planted several decades ago. Much knowledge has been gathered about the potency of the biologic effects caused by the intense shower of these low-energy AEs. Given their short range, AEs deposit much of their energy in the immediate vicinity of their site of decay. However, the promise of AE RPT has not yet been realized, with few agents evaluated in clinical trials and none becoming part of routine treatment so far. Instigated by the 2022 "Technical Meeting on Auger Electron Emitters for Radiopharmaceutical Developments" at the International Atomic Energy Agency, this review presents the current status of AE RPT based on the discussions by experts in the field. A scoring system was applied to illustrate hurdles in the development of AE RPT, and we present a selected list of well-studied and emerging AE-emitting radionuclides. Based on the number of AEs and other emissions, physical half-life, radionuclide production, radiochemical approaches, dosimetry, and vector availability, recommendations are put forward to enhance and impact future efforts in AE RPT research.


Assuntos
Elétrons , Compostos Radiofarmacêuticos , Compostos Radiofarmacêuticos/efeitos adversos , Partículas alfa/uso terapêutico , Meia-Vida , Agências Internacionais
4.
J Nucl Med ; 64(11): 1788-1790, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37442600

RESUMO

Molecular radionuclide therapy is a relatively novel anticancer treatment option using radiolabeled, tumor-specific vectors. On binding of these vectors to cancer cells, radioactive decay induces DNA damage and other effects, leading to cancer cell death. Treatments, such as with [177Lu]Lu-octreotate for neuroendocrine tumors and [177Lu]Lu-PSMA for prostate cancer, are now being implemented into routine clinical practice around the world. Nonetheless, research into the underlying radiobiologic effects of these treatments is essential to further improve them or formulate new ones. The purpose of the European Working Group on the Radiobiology of Molecular Radiotherapy is to promote knowledge, investment, and networking in this area. This report summarizes recent research and insights presented at the second International Workshop on Radiobiology of Molecular Radiotherapy, held in London, U.K., on March 13 and 14, 2023. The symposium was organized by members of the Cancer Research U.K. RadNet City of London and the European Working Group on the Radiobiology of Molecular Radiotherapy.


Assuntos
Tumores Neuroendócrinos , Masculino , Humanos , Tumores Neuroendócrinos/radioterapia , Dano ao DNA , Radioisótopos/uso terapêutico , Radiobiologia
5.
Theranostics ; 13(4): 1302-1310, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36923536

RESUMO

Rationale: An effective absorbed dose response relationship is yet to be established for Lutetium-177 based radionuclide therapies such as 177Lu-DOTATATE and 177Lu-PSMA. The inherent biological heterogeneity of neuroendocrine and prostate cancers may make the prospect of establishing cohort-based dose-response relationships unobtainable. Instead, an individual-based approach, monitoring the dose-response within each tumor could provide the necessary metric to monitor treatment efficacy. Methods: We developed a dual isotope SPECT imaging strategy to monitor the change over time in the relationship between 177Lu-DOTATATE and 111In-anti-γH2AX-TAT, a modified radiolabelled antibody that allows imaging of DNA double strand breaks, in mice bearing rat pancreatic cancer xenografts. The dynamics of γH2AX foci, apoptosis and senescence following exposure to 177Lu-DOTATATE was further investigated in vitro and in ex vivo tumor sections. Results: The change in slope of the 111In-anti-γH2AX-TAT to 177Lu signal between days 5 and 7 was found to be highly predictive of survival (r = 0.955, P < 0.0001). This pivotal timeframe was investigated further in vitro: clonogenic survival correlated with the number of γH2AX foci at day 6 (r = -0.995, P < 0.0005). While there was evidence of continuously low levels of apoptosis, delayed induction of senescence in vitro appeared to better account for the γH2AX response to 177Lu. The induction of senescence was further investigated by ex vivo analysis and corresponded with sustained retention of 177Lu within tumor regions. Conclusions: Dual isotope SPECT imaging can provide individualized tumor dose-responses that can be used to predict lutetium-177 treatment efficacy. This bio-dosimeter metric appears to be dependent upon the extent of senescence induction and suggests an integral role that senescence plays in lutetium-177 treatment efficacy.


Assuntos
Lutécio , Radioisótopos , Masculino , Humanos , Ratos , Camundongos , Animais , Radioisótopos/farmacologia , Radioisótopos/uso terapêutico , Tomografia Computadorizada de Emissão de Fóton Único , Quebras de DNA de Cadeia Dupla , Compostos Radiofarmacêuticos/farmacologia , Compostos Radiofarmacêuticos/uso terapêutico
6.
Nucl Med Biol ; 116-117: 108312, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36621256

RESUMO

INTRODUCTION: Radioligand therapy (RLT) is an expanding field that has shown great potential in the fight against cancer. Radionuclides that can be carried by selective ligands such as antibodies, peptides, and small molecules targeting cancerous cells have demonstrated a clear improvement in the move towards precision medicine. Poly (ADP-ribose) polymerase (PARP) is a family of enzymes involved in DNA damage repair signalling pathway, with PARP inhibitors olaparib, talazoparib, niraparib, veliparib, and rucaparib having FDA approval for cancer therapy in routine clinical use. Based on our previous work with the radiolabelled PARP inhibitor [18F]rucaparib, we replaced the fluorine-18 moiety, used for PET imaging, with iodine-123, a radionuclide used for SPECT imaging and Auger electron therapy, resulting in 8-[123I]iodo-5-(4-((methylamino)methyl)phenyl)-2,3,4,6-tetrahydro-1H-azepino[5,4,3-cd]indol-1-one, ([123I]GD1), as a potential radiopharmaceutical for RLT. METHODS: [123I]GD1 was synthesized via copper-mediated radioiodination from a selected boronic esters precursor. In vitro uptake, retention, blocking, and effects on clonogenic survival with [123I]GD1 treatment were tested in a panel of cancer cell lines. Enzymatic inhibition of PARP by GD1 was also tested in a cell-free system. The biodistribution of [123I]GD1 was investigated by SPECT/CT in mice following intravenous administration. RESULTS: Cell-free enzymatic inhibition and in vitro blocking experiments confirmed a modest ability of GD1 to inhibit PARP-1, IC50 = 239 nM. In vitro uptake of [123I]GD1 in different cell lines was dose dependent, and radiolabelled compound was retained in cells for >2 h. Significantly reduced clonogenic survival was observed in vitro after exposure of cells for 1 h with as low as 50 kBq of [123I]GD1. The biodistribution of [123I]GD1 was further characterized in vivo showing both renal and hepatobiliary clearance pathways with a biphasic blood clearance. CONCLUSION: We present the development of a new theragnostic agent based on the rucaparib scaffold and its evaluation in in vitro and in vivo models. The data reported show that [123I]GD1 may have potential to be used as a theragnostic agent.


Assuntos
Neoplasias , Inibidores de Poli(ADP-Ribose) Polimerases , Animais , Camundongos , Elétrons , Radioisótopos do Iodo/uso terapêutico , Neoplasias/radioterapia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Distribuição Tecidual , Indóis/química , Indóis/farmacologia , Linhagem Celular Tumoral/metabolismo , Linhagem Celular Tumoral/efeitos da radiação
7.
EJNMMI Res ; 12(1): 67, 2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36210377

RESUMO

PURPOSE: Radiopharmaceuticals targeting poly(ADP-ribose) polymerase (PARP) have emerged as promising agents for cancer diagnosis and therapy. PARP enzymes are expressed in both cancerous and normal tissue. Hence, the injected mass, molar activity and potential pharmacological effects are important considerations for the use of radiolabelled PARP inhibitors for diagnostic and radionuclide therapeutic applications. Here, we performed a systematic evaluation by varying the molar activity of [18F]olaparib and the injected mass of [TotalF]olaparib to investigate the effects on tumour and normal tissue uptake in two subcutaneous human glioblastoma xenograft models. METHODS: [18F]Olaparib uptake was evaluated in the human glioblastoma models: in vitro on U251MG and U87MG cell lines, and in vivo on tumour xenograft-bearing mice, after administration of [TotalF]olaparib (varying injected mass: 0.04-8.0 µg, and molar activity: 1-320 GBq/µmol). RESULTS: Selective uptake of [18F]olaparib was demonstrated in both models. Tumour uptake was found to be dependent on the injected mass of [TotalF]olaparib (µg) but not the molar activity. An injected mass of 1 µg resulted in the highest tumour uptake (up to 6.9 ± 1.3%ID/g), independent of the molar activity. In comparison, both the lower and higher injected masses of [TotalF]olaparib resulted in lower relative tumour uptake (%ID/g; P < 0.05). Ex vivo analysis of U87MG xenograft sections showed that the heterogeneity in [18F]olaparib intratumoural uptake correlated with PARP1 expression. Substantial upregulation of PARP1-3 expression was observed after administration of [TotalF]olaparib (> 0.5 µg). CONCLUSION: Our findings show that the injected mass of [TotalF]olaparib has significant effects on tumour uptake. Moderate injected masses of PARP inhibitor-derived radiopharmaceuticals may lead to improved relative tumour uptake and tumour-to-background ratio for cancer diagnosis and radionuclide therapy.

8.
EJNMMI Res ; 12(1): 50, 2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-35962885

RESUMO

PURPOSE: Ataxia telangiectasia mutated (ATM) is a key mediator of the DNA damage response, and several ATM inhibitors (ATMi) are currently undergoing early phase clinical trials for the treatment of cancer. A radiolabelled ATMi to determine drug pharmacokinetics could assist patient selection in a move towards more personalised medicine. The aim of this study was to synthesise and investigate the first 18F-labelled ATM inhibitor [18F]1 for non-invasive imaging of ATM protein and ATMi pharmacokinetics. METHODS: Radiofluorination of a confirmed selective ATM inhibitor (1) was achieved through substitution of a nitro-precursor with [18F]fluoride. Uptake of [18F]1 was assessed in vitro in H1299 lung cancer cells stably transfected with shRNA to reduce expression of ATM. Blocking studies using several non-radioactive ATM inhibitors assessed binding specificity to ATM. In vivo biodistribution studies were performed in wild-type and ATM-knockout C57BL/6 mice using PET/CT and ex vivo analysis. Uptake of [18F]1 in H1299 tumour xenografts was assessed in BALB/c nu/nu mice. RESULTS: Nitro-precursor 2 was synthesised with an overall yield of 12%. Radiofluorination of 2 achieved radiochemically pure [18F]1 in 80 ± 13 min with a radiochemical yield of 20 ± 13% (decay-corrected) and molar activities up to 79.5 GBq/µmol (n = 11). In vitro, cell-associated activity of [18F]1 increased over 1 h, and retention of [18F]1 dropped to 50% over 2 h. [18F]1 uptake did not correlate with ATM expression, but could be reduced significantly with an excess of known ATM inhibitors, demonstrating specific binding of [18F]1 to ATM. In vivo, fast hepatobiliary clearance was observed with tumour uptake ranging 0.13-0.90%ID/g after 1 h. CONCLUSION: Here, we report the first radiofluorination of an ATM inhibitor and its in vitro and in vivo biological evaluations, revealing the benefits but also some limitations of 18F-labelled ATM inhibitors.

10.
Eur J Nucl Med Mol Imaging ; 49(11): 3668-3678, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35614267

RESUMO

PURPOSE: Rucaparib, an FDA-approved PARP inhibitor, is used as a single agent in maintenance therapy to provide promising treatment efficacy with an acceptable safety profile in various types of BRCA-mutated cancers. However, not all patients receive the same benefit from rucaparib-maintenance therapy. A predictive biomarker to help with patient selection for rucaparib treatment and predict clinical benefit is therefore warranted. With this aim, we developed [18F]rucaparib, an 18F-labelled isotopologue of rucaparib, and employed it as a PARP-targeting agent for cancer imaging with PET. Here, we report the in vitro and in vivo evaluation of [18F]rucaparib in human pancreatic cancer models. METHOD: We incorporated the positron-emitting 18F isotope into rucaparib, enabling its use as a PET imaging agent. [18F]rucaparib binds to the DNA damage repair enzyme, PARP, allowing direct visualisation and measurement of PARP in cancerous models before and after PARP inhibition or other genotoxic cancer therapies, providing critical information for cancer diagnosis and therapy. Proof-of-concept evaluations were determined in pancreatic cancer models. RESULTS: Uptake of [18F]rucaparib was found to be mainly dependent on PARP1 expression. Induction of DNA damage increased PARP expression, thereby increasing uptake of [18F]rucaparib. In vivo studies revealed relatively fast blood clearance of [18F]rucaparib in PSN1 tumour-bearing mice, with a tumour uptake of 5.5 ± 0.5%ID/g (1 h after i.v. administration). In vitro and in vivo studies showed significant reduction of [18F]rucaparib uptake by addition of different PARP inhibitors, indicating PARP-selective binding. CONCLUSION: Taken together, we demonstrate the potential of [18F]rucaparib as a non-invasive PARP-targeting imaging agent for pancreatic cancers.


Assuntos
Antineoplásicos , Neoplasias Pancreáticas , Animais , Humanos , Indóis , Camundongos , Neoplasias Pancreáticas/diagnóstico por imagem , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico
11.
STAR Protoc ; 3(2): 101355, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35542177

RESUMO

The colony formation assay is the gold-standard technique to assess cell viability after treatment with cytotoxic reagents, ionizing radiation, and cytotoxic combinatorial treatments. This protocol describes a high-throughput automated and high-content imaging approach to screen siRNA molecular libraries in HeLa cervical cancer cells in 96-well format. We detail reverse transfection of cells with siRNAs, followed by ionizing radiation, fixing, and staining of the plates for automated colony counting. This protocol can be used across a broad range of cell types. For complete details on the use and execution of this protocol, please refer to Tiwana et al. (2015).


Assuntos
Ensaios de Triagem em Larga Escala , Radiação Ionizante , Biblioteca Gênica , Ensaios de Triagem em Larga Escala/métodos , RNA Interferente Pequeno/genética , Transfecção
12.
Nucl Med Biol ; 108-109: 44-53, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35276447

RESUMO

Molecular radionuclide therapy (MRT) is an effective treatment for both localised and disseminated tumours. Biomarkers can be used to identify potential subtypes of tumours that are known to respond better to standard MRT protocols. These enrolment-based biomarkers can further be used to develop dose-response relationships using image-based dosimetry within these defined subtypes. However, the biological identity of the cancers treated with MRT are commonly not well-defined, particularly for neuroendocrine neoplasms. The biological heterogeneity of such cancers has hindered the establishment of dose-responses and minimum tumour dose thresholds. Biomarkers could also be used to determine normal tissue MRT dose limits and permit greater injected doses of MRT in patients. An alternative approach is to understand the repair capacity limits of tumours using radiobiology-based biomarkers within and outside patient cohorts currently treated with MRT. It is hoped that by knowing more about tumours and how they respond to MRT, biomarkers can provide needed dimensionality to image-based biodosimetry to improve MRT with optimized protocols and personalised therapies.


Assuntos
Tumores Neuroendócrinos , Biomarcadores , Humanos , Tumores Neuroendócrinos/radioterapia , Medicina de Precisão/métodos , Radioisótopos/uso terapêutico , Radiometria
13.
Org Lett ; 23(18): 7290-7294, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34459606

RESUMO

The poly(ADP-ribose) polymerase (PARP) inhibitor rucaparib is used in the clinic to treat BRCA-mutated cancers. Herein, we report two strategies to access the 18F-isotopologue of rucaparib by applying a copper-mediated nucleophilic 18F-fluorodeboronation. The most successful approach features an aldehydic boronic ester precursor that is subjected to reductive amination post-18F-labeling and affords [18F]rucaparib with an activity yield of 11% ± 3% (n = 3) and a molar activity (Am) up to 30 GBq/µmol. Preliminary in vitro studies are presented.


Assuntos
Proteína BRCA1/química , Proteína BRCA2/química , Cobre/química , Indóis/síntese química , Inibidores de Poli(ADP-Ribose) Polimerases/síntese química , Proteína BRCA1/genética , Proteína BRCA2/genética , Feminino , Humanos , Indóis/química , Estrutura Molecular , Inibidores de Poli(ADP-Ribose) Polimerases/química
14.
Biomolecules ; 11(8)2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34439854

RESUMO

Glioblastoma multiforme (GBM) is the most common primary brain cancer. GBMs commonly acquire resistance to standard-of-care therapies. Among the novel means to sensitize GBM to DNA-damaging therapies, a promising strategy is to combine them with inhibitors of the DNA damage repair (DDR) machinery, such as inhibitors for poly(ADP-ribose) polymerase (PARP). PARP inhibitors (PARPis) have already shown efficacy and have received regulatory approval for breast, ovarian, prostate, and pancreatic cancer treatment. In these cancer types, after PARPi administration, patients carrying specific mutations in the breast cancer 1 (BRCA1) and 2 (BRCA2) suppressor genes have shown better response when compared to wild-type carriers. Mutated BRCA genes are infrequent in GBM tumors, but their cells can carry other genetic alterations that lead to the same phenotype collectively referred to as 'BRCAness'. The most promising biomarkers of BRCAness in GBM are related to isocitrate dehydrogenases 1 and 2 (IDH1/2), epidermal growth factor receptor (EGFR), phosphatase and tensin homolog (PTEN), MYC proto-oncogene, and estrogen receptors beta (ERß). BRCAness status identified by accurate biomarkers can ultimately predict responsiveness to PARPi therapy, thereby allowing patient selection for personalized treatment. This review discusses potential biomarkers of BRCAness for a 'precision medicine' of GBM patients.


Assuntos
Proteína BRCA1/genética , Proteína BRCA2/genética , Glioblastoma/tratamento farmacológico , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Biomarcadores Tumorais/genética , Humanos , Proto-Oncogene Mas
16.
J Nucl Med ; 62(11): 1537-1544, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33789931

RESUMO

Imaging of intranuclear epitopes using antibodies tagged to cell-penetrating peptides has great potential given its versatility, specificity, and sensitivity. However, this process is technically challenging because of the location of the target. Previous research has demonstrated a variety of intranuclear epitopes that can be targeted with antibody-based radioimmunoconjugates. Here, we developed a controlled-expression model of nucleus-localized green fluorescent protein (GFP) to interrogate the technical limitations of intranuclear SPECT using radioimmunoconjugates, notably the lower target-abundance detection threshold. Methods: We stably transfected the lung adenocarcinoma cell line H1299 with an enhanced GFP (EGFP)-tagged histone 2B (H2B) and generated 4 cell lines expressing increasing levels of GFP. EGFP levels were quantified using Western blot, flow cytometry, and enzyme-linked immunosorbent assay. An anti-GFP antibody (GFP-G1) was modified using dibenzocyclooctyne-N3-based strain-promoted azide-alkyne cycloaddition with the cell-penetrating peptide TAT (GRKKRRQRRRPPQGYG), which also includes a nuclear localization sequence, and the metal ion chelator N3-Bn-diethylenetriamine pentaacetate (DTPA) to allow radiolabeling with 111In. Cell uptake of 111In-GFP-G1-TAT was evaluated across 5 cell clones expressing different levels of H2B-EGFP in vitro. Tumor uptake in xenograft-bearing mice was quantified to determine the smallest amount of target epitope that could be detected using 111In-GFP-G1-TAT. Results: We generated 4 H1299 cell clones expressing different levels of H2B-EGFP (0-1 million copies per cell, including wild-type H1299 cells). GFP-G1 monoclonal antibody was produced and purified in house, and selective binding to H2B-EGFP was confirmed. The affinity (dissociation constant) of GFP-G1 was determined as 9.1 ± 3.0 nM. GFP-G1 was conjugated to TAT and DTPA. 111In-GFP-G1-TAT uptake in H2B-EGFP-expressing cell clones correlated linearly with H2B-EGFP expression (P < 0.001). In vivo xenograft studies demonstrated that 111In-GFP-G1-TAT uptake in tumor tissue correlated linearly with expression of H2B-EGFP (P = 0.004) and suggested a lower target-abundance detection threshold of approximately 240,000 copies per cell. Conclusion: Here, we present a proof-of-concept demonstration that antibody-based imaging of intranuclear targets is capable both of detecting the presence of an epitope of interest with a copy number above 240,000 copies per cell and of determining differences in expression level above this threshold.


Assuntos
Tomografia Computadorizada de Emissão de Fóton Único , Proteínas de Fluorescência Verde , Limite de Detecção
17.
Clin Cancer Res ; 27(6): 1585-1594, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33082213

RESUMO

Targeting of PARP enzymes has emerged as an effective therapeutic strategy to selectively target cancer cells with deficiencies in homologous recombination signaling. Currently used to treat BRCA-mutated cancers, PARP inhibitors (PARPi) have demonstrated improved outcome in various cancer types as single agents. Ongoing efforts have seen the exploitation of PARPi combination therapies, boosting patient responses as a result of drug synergisms. Despite great successes using PARPi therapy, selecting those patients who will benefit from single agent or combination therapy remains one of the major challenges. Numerous reports have demonstrated that the presence of a BRCA mutation does not always result in synthetic lethality with PARPi therapy in treatment-naïve tumors. Cancer cells can also develop resistance to PARPi therapy. Hence, combination therapy may significantly affect the treatment outcomes. In this review, we discuss the development and utilization of PARPi in different cancer types from preclinical models to clinical trials, provide a current overview of the potential uses of PARP imaging agents in cancer therapy, and discuss the use of radiolabeled PARPi as radionuclide therapies.


Assuntos
Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Poli(ADP-Ribose) Polimerase-1/genética , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Animais , Humanos , Neoplasias/genética
18.
J Nucl Med ; 61(11): 1544-1552, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33037092

RESUMO

In recent years, targeted radionuclide therapy (TRT) has emerged as a promising strategy for cancer treatment. In contrast to conventional radiotherapy, TRT delivers ionizing radiation to tumors in a targeted manner, reducing the dose that healthy tissues are exposed to. Existing TRT strategies include the use of 177Lu-DOTATATE, 131I-metaiodobenzylguanidine, Bexxar, and Zevalin, clinically approved agents for the treatment of neuroendocrine tumors, neuroblastoma, and non-Hodgkin lymphoma, respectively. Although promising results have been obtained with these agents, clinical evidence acquired to date suggests that only a small percentage of patients achieves complete response. Consequently, there have been attempts to improve TRT outcomes through combinations with other therapeutic agents; such strategies include administering concurrent TRT and chemotherapy, and the use of TRT with known or putative radiosensitizers such as poly(adenosine diphosphate ribose) polymerase and mammalian-target-of-rapamycin inhibitors. In addition to potentially achieving greater therapeutic effects than the respective monotherapies, these strategies may lead to lower dosages or numbers of cycles required and, in turn, reduce unwanted toxicities. As of now, several clinical trials have been conducted to assess the benefits of TRT-based combination therapies, sometimes despite limited preclinical evidence being available in the public domain to support their use. Although some clinical trials have yielded promising results, others have shown no clear survival benefit from particular combination treatments. Here, we present a comprehensive review of combination strategies with TRT reported in the literature to date and evaluate their therapeutic potential.


Assuntos
Neoplasias/radioterapia , Ciclo Celular/efeitos dos fármacos , Terapia Combinada , Dano ao DNA , Reparo do DNA/efeitos dos fármacos , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas Hedgehog/antagonistas & inibidores , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , NAD/metabolismo , Octreotida/análogos & derivados , Octreotida/uso terapêutico , Compostos Organometálicos/uso terapêutico , Radiossensibilizantes/farmacologia , Radiossensibilizantes/uso terapêutico , Serina-Treonina Quinases TOR/antagonistas & inibidores , Inibidores da Topoisomerase/farmacologia , Inibidores da Topoisomerase/uso terapêutico
19.
Cancers (Basel) ; 12(8)2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32781531

RESUMO

Insufficient apoptosis is a recognised hallmark of cancer. A strategy to quantitatively measure apoptosis in vivo would be of immense value in both drug discovery and routine patient management. The first irreversible step in the apoptosis cascade is activation of the "executioner" caspase-3 enzyme to commence cleavage of key structural proteins. One strategy to measure caspase-3 activity is Positron Emission Tomography using isatin-5-sulfonamide radiotracers. One such radiotracer is [18F]ICMT-11, which has progressed to clinical application. This review summarises the design and development process for [18F]ICMT-11, suggesting potential avenues for further innovation.

20.
Theranostics ; 10(13): 5802-5814, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32483420

RESUMO

Rationale: The evaluation of early treatment response is critical for patient prognosis and treatment planning. When the current methods rely on invasive protocols that evaluate the expression of DNA damage markers on patient biopsy samples, we aim to evaluate a non-invasive PET imaging approach to monitor the early expression of the phosphorylated histone γH2AX in the context of pancreatic cancer targeted radionuclide therapy. Pancreatic ductal adenocarcinoma has a poor patient prognosis due to the absence of curative treatment for patients with advanced disease. There is therefore a critical need for the fast clinical translation of new therapeutic options. In line with these observations, our group has been focusing on the development of radiotheranostic agents based on a fully human monoclonal antibody (5B1) with exceptional affinity for CA19.9, an antigen overexpressed in PDAC. Two on-going clinical trials resulted from these efforts, one with 89Zr (diagnosis) and one with 177Lu (ß-particle therapy). More recently, we successfully developed and evaluated in PDAC mouse models a targeted α-therapy strategy with high clinical translation potential. We aim to expedite the clinical translation of the developed radioimmunotherapy approaches by investigating the early therapeutic response and effect of radiation therapy in a PDAC mouse model via PET imaging. Methods: Mice bearing BxPC3 tumor xenografts were treated with α- and ß-particle pretargeted radioimmunotherapy (PRIT), external beam radiotherapy (EBRT), or sham-treated (vehicle). The phosphorylated histone γH2AX produced as a response to DNA double strand breaks was quantified with the PET radiotracer, [89Zr]Zr-DFO-anti-γH2AX-TAT. Results: PET imaging studies in BxPC3 PDAC mouse models demonstrated increased uptake of [89Zr]Zr-DFO-anti-γH2AX-TAT (6.29 ± 0.15 %IA/g) following ß-PRIT in BxPC3 PDAC xenografts as compared to the saline control group (4.58 ± 0.76 %IA/g) and EBRT control group (5.93 ± 0.76 %IA/g). Similarly, significantly higher uptake of [89Zr]Zr-DFO-anti-γH2AX-TAT was observed in tumors of the 225Ac-PRIT and EBRT (10 Gy) cohorts (7.37 ± 1.23 and 6.80 ± 1.24 %IA/g, respectively) compared to the negative control cohort (5.08 ± 0.95 %IA/g). Ex vivo γH2AX immunohistochemistry and immunofluorescence analysis correlated with in vivo89Zr-anti-γH2AX PET/CT imaging with increased γH2AX positive cell and γH2AX foci per cell in the treated cohorts. When α-PRIT resulted in prolonged overall survival of treated animals (107.5 days) as compared to ß-PRIT (73.0 days), no evidence of difference in [89Zr]Zr-DFO-anti-γH2AX-TAT uptake at the tumor site was observed, highlighting that DNA damage is not the sole radiobiology paradigm and that off-targeted (bystander) effects should be considered. Conclusions: PET imaging studies with [89Zr]Zr-DFO-anti-γH2AX-TAT following α- and ß-particle PRIT in a BxPC3 PDAC subcutaneous xenograft mouse model allowed the monitoring of tumor radiobiological response to treatment.


Assuntos
Antígenos Glicosídicos Associados a Tumores/análise , Carcinoma Ductal Pancreático/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Partículas alfa/uso terapêutico , Animais , Partículas beta/uso terapêutico , Biomarcadores Farmacológicos/análise , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/radioterapia , Linhagem Celular Tumoral , DNA/genética , Quebras de DNA de Cadeia Dupla , Dano ao DNA/genética , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Nus , Neoplasias Pancreáticas/patologia , Tomografia por Emissão de Pósitrons/métodos , Radioimunoterapia/métodos , Ensaios Antitumorais Modelo de Xenoenxerto , Neoplasias Pancreáticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA