Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Biochem Biophys ; 81(1): 105-115, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36346546

RESUMO

Atomoxetine (ATX) is a presynaptic norepinephrine transporter (NET) inhibitor widely prescribed for attention-deficit/hyperactivity disorder (ADHD) due to its low abuse potential and absence of psychostimulant effects. While NET inhibition is implicated in the clinical response, several additional pharmacoactivities may contribute to clinical efficacy or unwanted side effects. We recently reported that ATX can dose-dependently alter mitochondrial function and cellular redox status. Here, we assessed potential alterations in mitochondrial biogenesis, mitochondrial dynamics and cellular antioxidant capacity following high- and low-dose ATX treatment of differentiated human neuroblastoma cells. Human SH-SY5Y neuroblastoma cells were treated with ATX (1, 5, 10, 20 and 50 µM) for 7 days under differentiation culture conditions. Changes in the expression levels of protein markers for mitochondrial biogenesis, fusion and fission as well as of antioxidant proteins were analysed by Western blot. High-dose ATX (50 µM) reduced while low-dose ATX (10 µM) increased mitochondrial biogenesis as evidenced by parallel changes in SDHA, COX-I, PGC1α and TFAM expression. High-dose ATX also reduced mitochondrial fusion as evidenced by OPA1 and MFN2 downregulation, and mitochondrial fission as indicated by DRP1 and Fis1 downregulation. In contrast, ATX did not alter expression of the antioxidant enzymes SOD1 and catalase, the phase II transcription factor Nfr2, or the Nfr2-regulated antioxidant enzyme NQO1. Clinical responses and side effects of ATX may be mediated by dose-dependent modulation of mitochondrial biogenesis and dynamics as well as NET inhibition.


Assuntos
Antioxidantes , Neuroblastoma , Humanos , Cloridrato de Atomoxetina/farmacologia , Antioxidantes/farmacologia , Biogênese de Organelas , Neurônios
2.
Antioxidants (Basel) ; 11(1)2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-35052552

RESUMO

Garlic (Allium sativum) has been used in alternative medicine to treat several diseases, such as cardiovascular and neurodegenerative diseases, cancer, and hepatic diseases. Several publications have highlighted other features of garlic, including its antibacterial, antioxidative, antihypertensive, and antithrombotic properties. The properties of garlic result from the combination of natural compounds that act synergistically and cause different effects. Some garlic-derived compounds have been studied for the treatment of several types of cancer; however, reports on the effects of garlic on neuroblastoma are scarce. Neuroblastoma is a prevalent childhood tumor for which the search for therapeutic alternatives to improve treatment without affecting the patients' quality of life continues. Garlic-derived compounds hold potential for the treatment of this type of cancer. A review of articles published to date on some garlic compounds and their effect on neuroblastoma was undertaken to comprehend the possible therapeutic role of these compounds. This review aimed to analyze the impact of some garlic compounds on cells derived from neuroblastoma.

3.
Molecules ; 25(23)2020 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-33260783

RESUMO

Oxidative stress is a crucial event underlying several pediatric neurological diseases, such as the central nervous system (CNS) tumors, autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD). Neuroprotective therapy with natural compounds used as antioxidants has the potential to delay, ameliorate or prevent several pediatric neurological diseases. The present review provides an overview of the most recent research outcomes following quercetin treatment for CNS tumors, ASD and ADHD as well as describes the potential in vitro and in vivo ameliorative effect on oxidative stress of bioactive natural compounds, which seems like a promising future therapy for these diseases. The neuroprotective effects of quercetin against oxidative stress can also be applied in the management of several neurodegenerative disorders with effects such as anti-cancer, anti-inflammatory, anti-viral, anti-obesity and anti-microbial. Therefore, quercetin appears to be a suitable adjuvant for therapy against pediatric neurological diseases.


Assuntos
Doenças Neurodegenerativas/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Quercetina/uso terapêutico , Criança , Humanos
4.
Toxicol In Vitro ; 51: 63-73, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29723631

RESUMO

Curcumin is a polyphenol compound extracted from Curcuma longa plant, is a molecule with pleiotropic effects that suppresses transformation, proliferation and metastasis of malignant tumors. Curcumin can cause different kinds of cell death depending of its concentration on the exposed cell type. Here we show that exposure of the glioblastoma cell line A172 to curcumin at 50 µM, the IC50, causes morphological change characteristic of paraptosis cell-death. Vesicles derived from the endoplasmic reticulum (ER) and low membrane potential of the mitochondria were constantly found in the exposed cells. Furthermore, changes in expression of the ER Stress Response (ERSR) genes IRE1 and ATF6, and the microRNAs (miRNAs) miR-27a, miR-222, miR-449 was observed after exposure to curcumin. AKT-Insulin and p53-BCL2 networks were predicted being modulated by the affected miRNAs. Furthermore, AKT protein levels reduction was confirmed. Our data, strongly suggest that curcumin exerts its cell-death properties by affecting the integrity of the reticulum, leading to paraptosis in the glioblastoma cells. These data unveils the versatility of curcumin to control cancer progression.


Assuntos
Antineoplásicos/farmacologia , Curcumina/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , MicroRNAs/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo
5.
Exp Neurol ; 253: 16-27, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24374061

RESUMO

Parkinson's disease has long been associated with impaired mitochondrial complex I activity, while several gene defects associated with familial Parkinson's involve defects in mitochondrial function or 'quality control' pathways, causing an imbalance between mitochondrial biogenesis and removal of dysfunctional mitochondria by autophagy. Amongst these are mutations of the gene for PTEN-induced kinase 1 (PINK1) in which mitochondrial function is abnormal. Peroxisome proliferator-activated receptor gamma (PPARγ), a nuclear receptor and ligand-dependent transcription factor, regulates pathways of inflammation, lipid and carbohydrate metabolism, antioxidant defences and mitochondrial biogenesis. We have found that inhibition of complex I in human differentiated SHSY-5Y cells by the complex I inhibitor rotenone irreversibly decrease mitochondrial mass, membrane potential and oxygen consumption, while increasing free radical generation and autophagy. Similar changes are seen in PINK1 knockdown cells, in which potential, oxygen consumption and mitochondrial mass are all decreased. In both models, all these changes were reversed by pre-treatment of the cells with the PPARγ agonist, rosiglitazone, which increased mitochondrial biogenesis, increased oxygen consumption and suppressed free radical generation and autophagy. Thus, rosiglitazone is neuroprotective in two different models of mitochondrial dysfunction associated with Parkinson's disease through a direct impact on mitochondrial function.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Mitocôndrias/metabolismo , Proteínas do Tecido Nervoso/metabolismo , PPAR gama/metabolismo , Proteínas Quinases/metabolismo , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/genética , Inibidores Enzimáticos/farmacologia , Proteínas de Grupo de Alta Mobilidade/metabolismo , Humanos , Inseticidas/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/fisiologia , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/efeitos dos fármacos , NAD(P)H Desidrogenase (Quinona)/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Consumo de Oxigênio , PPAR gama/agonistas , PTEN Fosfo-Hidrolase , Fator B de Elongação Transcricional Positiva/metabolismo , Proteínas Quinases/genética , Espécies Reativas de Oxigênio/metabolismo , Rotenona/farmacologia , Transfecção
6.
Neurochem Res ; 33(8): 1428-34, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18219574

RESUMO

Microdialysis perfusion of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) in rat lumbar spinal cord produces severe motoneuron damage and consequently hindlimb paralysis. Here we studied the time course of the AMPA-induced neurodegenerative changes and motor alterations, and the protective effect of leupeptin, an inhibitor of calpain, a Ca(2+)-activated protease. Paralysis occurs at 4-6 h after AMPA perfusion, but cresyl violet staining showed that motoneuron damage starts at about 3 h and progresses until reaching 50% neuronal loss at 6 h and 90% loss at 12 h. In contrast, choline acetyltransferase (ChAT) immunohistochemistry revealed that the enzyme is already decreased at 30 min after AMPA perfusion and practically disappears at 3 h. Microdialysis coperfusion of leupeptin with AMPA prevented the motor alterations and paralysis and remarkably reduced both the decrement in ChAT immunoreactivity and the loss of motoneurons. We conclude that an increased Ca(2+) influx through Ca(2+)-permeable AMPA receptors activates calpain, and as a consequence ChAT content decreases earlier than other Ca(2+)-dependent processes, including the proteolytic activity of calpain, cause the death of motoneurons.


Assuntos
Calpaína/antagonistas & inibidores , Inibidores de Cisteína Proteinase/metabolismo , Agonistas de Aminoácidos Excitatórios/toxicidade , Leupeptinas/metabolismo , Neurônios Motores/metabolismo , Medula Espinal/citologia , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/toxicidade , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Calpaína/metabolismo , Masculino , Neurônios Motores/citologia , Neurônios Motores/patologia , Ratos , Ratos Wistar , Teste de Desempenho do Rota-Rod , Medula Espinal/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA