Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biomed Mater Res A ; 112(6): 866-880, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38189109

RESUMO

For cell therapies, the subcutaneous space is an attractive transplant site due to its large surface area and accessibility for implantation, monitoring, biopsy, and retrieval. However, its poor vascularization has catalyzed research to induce blood vessel formation within the site to enhance cell revascularization and survival. Most studies focus on the subcutaneous space of rodents, which does not recapitulate important anatomical features and vascularization responses of humans. Herein, we evaluate biomaterial-driven vascularization in the porcine subcutaneous space. Additionally, we report the first use of cost-effective fluorescent microspheres to quantify perfusion in the porcine subcutaneous space. We investigate the vascularization-inducing efficacy of vascular endothelial growth factor (VEGF)-delivering synthetic hydrogels based on 4-arm poly(ethylene) glycol macromers with terminal maleimides (PEG-4MAL). We compare three groups: a non-degradable hydrogel with a VEGF-releasing PEG-4MAL gel coating (Core+VEGF gel); an uncoated, non-degradable hydrogel (Core-only); and naïve tissue. After 2 weeks, Core+VEGF gel has significantly higher tissue perfusion, blood vessel area, blood vessel density, and number of vessels compared to both Core-only and naïve tissue. Furthermore, healthy vital signs during surgery and post-procedure metrics demonstrate the safety of hydrogel delivery. We demonstrate that VEGF-delivering synthetic hydrogels induce robust vascularization and perfusion in the porcine subcutaneous space.


Assuntos
Materiais Biocompatíveis , Fator A de Crescimento do Endotélio Vascular , Humanos , Suínos , Animais , Fator A de Crescimento do Endotélio Vascular/farmacologia , Materiais Biocompatíveis/metabolismo , Hidrogéis/farmacologia , Hidrogéis/metabolismo , Polietilenoglicóis
2.
Cell Rep Med ; 4(3): 100959, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36863336

RESUMO

The transplanting islets to the liver approach suffers from an immediate posttransplant loss of islets of more than 50%, progressive graft dysfunction over time, and precludes recovery of grafts should there be serious complications such as the development of teratomas with grafts that are stem cell-derived islets (SC-islets). The omentum features an attractive extrahepatic alternative site for clinical islet transplantation. We explore an approach in which allogeneic islets are transplanted onto the omentum, which is bioengineered with a plasma-thrombin biodegradable matrix in three diabetic non-human primates (NHPs). Within 1 week posttransplant, each transplanted NHP achieves normoglycemia and insulin independence and remains stable until termination of the experiment. Success was achieved in each case with islets recovered from a single NHP donor. Histology demonstrates robust revascularization and reinnervation of the graft. This preclinical study can inform the development of strategies for ß cell replacement including the use of SC-islets or other types of novel cells in clinical settings.


Assuntos
Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Animais , Omento/cirurgia , Ilhotas Pancreáticas/cirurgia , Ilhotas Pancreáticas/metabolismo , Transplante Homólogo , Transplante das Ilhotas Pancreáticas/efeitos adversos , Transplante das Ilhotas Pancreáticas/patologia , Primatas , Aloenxertos
3.
Biomaterials ; 286: 121601, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35660823

RESUMO

The transformative potential of cells as therapeutic agents is being realized in a wide range of applications, from regenerative medicine to cancer therapy to autoimmune disorders. The majority of these therapies require ex vivo expansion of the cellular product, often utilizing fetal bovine serum (FBS) in the culture media. However, the impact of residual FBS on immune responses to cell therapies and the resulting cell therapy outcomes remains unclear. Here, we show that hydrogel-delivered FBS elicits a robust type 2 immune response characterized by infiltration of eosinophils and CD4+ T cells. Host secretion of cytokines associated with type 2 immunity, including IL-4, IL-5, and IL-13, is also increased in FBS-containing hydrogels. We demonstrate that the immune response to xenogeneic serum components dominates the local environment and masks the immunomodulatory effects of biomaterial-delivered mesenchymal stromal/stem cells. Importantly, delivery of relatively small amounts of FBS (3.2% by volume) within BMP-2-containing biomaterial constructs dramatically reduces the ability of these constructs to promote de novo bone formation in a radial defect model in immunocompetent mice. These results urge caution when interpreting the immunological and tissue repair outcomes in immunocompetent pre-clinical models from cells and biomaterial constructs that have come in contact with xenogeneic serum components.


Assuntos
Materiais Biocompatíveis , Células-Tronco Mesenquimais , Animais , Materiais Biocompatíveis/farmacologia , Diferenciação Celular , Hidrogéis/farmacologia , Imunidade , Camundongos , Osteogênese
4.
Sci Adv ; 6(35): eaba5573, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32923626

RESUMO

Antibody-mediated immune checkpoint blockade is a transformative immunotherapy for cancer. These same mechanisms can be repurposed for the control of destructive alloreactive immune responses in the transplantation setting. Here, we implement a synthetic biomaterial platform for the local delivery of a chimeric streptavidin/programmed cell death-1 (SA-PD-L1) protein to direct "reprogramming" of local immune responses to transplanted pancreatic islets. Controlled presentation of SA-PD-L1 on the surface of poly(ethylene glycol) microgels improves local retention of the immunomodulatory agent over 3 weeks in vivo. Furthermore, local induction of allograft acceptance is achieved in a murine model of diabetes only when receiving the SA-PD-L1-presenting biomaterial in combination with a brief rapamycin treatment. Immune characterization revealed an increase in T regulatory and anergic cells after SA-PD-L1-microgel delivery, which was distinct from naïve and biomaterial alone microenvironments. Engineering the local microenvironment via biomaterial delivery of checkpoint proteins has the potential to advance cell-based therapies, avoiding the need for systemic chronic immunosuppression.


Assuntos
Antígeno B7-H1 , Transplante das Ilhotas Pancreáticas , Animais , Antígeno B7-H1/metabolismo , Materiais Biocompatíveis/farmacologia , Sobrevivência de Enxerto , Fatores Imunológicos , Imunoterapia , Camundongos , Camundongos Endogâmicos C57BL , Receptor de Morte Celular Programada 1 , Estreptavidina
5.
Adv Healthc Mater ; 9(9): e2000102, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32255552

RESUMO

Translation of transplanted alginate-encapsulated pancreatic islets to treat type 1 diabetes has been hindered by inconsistent long-term efficacy. This loss of graft function can be partially attributed to islet dysfunction associated with the destruction of extracellular matrix (ECM) interactions during the islet isolation process as well as immunosuppression-associated side effects. This study aims at recapitulating islet-ECM interactions by the direct functionalization of alginate with the ECM-derived peptides RGD, LRE, YIGSR, PDGEA, and PDSGR. Peptide functionalization is controlled in a concentration-dependent manner and its presentation is found to be homogeneous across the microcapsule environment. Preweaned porcine islets are encapsulated in peptide-functionalized alginate microcapsules, and those encapsulated in RGD-functionalized alginate displays enhanced viability and glucose-stimulated insulin release. Effects are RGD-specific and not observed with its scrambled control RDG nor with LRE, YIGSR, PDGEA, and PDSGR. This study supports the sustained presentation of ECM-derived peptides in helping to maintain health of encapsulated pancreatic islets and may aid in prolonging longevity of encapsulated islet grafts.


Assuntos
Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Alginatos , Animais , Matriz Extracelular , Insulina , Peptídeos/farmacologia , Suínos
6.
Adv Healthc Mater ; 8(14): e1900371, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31111689

RESUMO

Thiol-norbornene (thiol-ene) photoclickable poly(ethylene glycol) (PEG) hydrogels are a versatile biomaterial for cell encapsulation, drug delivery, and regenerative medicine. Numerous in vitro studies with these 4-arm ester-linked PEG-norbornene (PEG-4eNB) hydrogels demonstrate robust cytocompatibility and ability to retain long-term integrity with nondegradable crosslinkers. However, when transplanted in vivo into the subcutaneous or intraperitoneal space, these PEG-4eNB hydrogels with nondegradable crosslinkers rapidly degrade within 24 h. This characteristic limits the usefulness of PEG-4eNB hydrogels in biomedical applications. Replacing the ester linkage with an amide linkage (PEG-4aNB) mitigates this rapid in vivo degradation, and the PEG-4aNB hydrogels maintain long-term in vivo stability for months. Furthermore, when compared to PEG-4eNB, the PEG-4aNB hydrogels demonstrate equivalent mechanical properties, crosslinking kinetics, and high cytocompatibility with rat islets and human mesenchymal stem cells. Thus, the PEG-4aNB hydrogels may be a suitable replacement platform without necessitating critical design changes or sacrificing key properties relevant to the well-established PEG-4eNB hydrogels.


Assuntos
Hidrogéis/química , Luz , Polietilenoglicóis/química , Compostos de Sulfidrila/química , Animais , Feminino , Humanos , Hidrogéis/síntese química , Cinética , Células-Tronco Mesenquimais/citologia , Camundongos Endogâmicos BALB C , Polietilenoglicóis/síntese química , Ratos , Compostos de Sulfidrila/síntese química
7.
Am J Transplant ; 19(5): 1315-1327, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30378751

RESUMO

Transplant of hydrogel-encapsulated allogeneic islets has been explored to reduce or eliminate the need for chronic systemic immunosuppression by creating a physical barrier that prevents direct antigen presentation. Although successful in rodents, translation of alginate microencapsulation to large animals and humans has been hindered by large capsule sizes (≥500 µm diameter) that result in suboptimal nutrient diffusion in the intraperitoneal space. We developed a microfluidic encapsulation system that generates synthetic poly(ethylene glycol)-based microgels with smaller diameters (310 ± 14 µm) that improve encapsulated islet insulin responsiveness over alginate capsules and allow transplant within vascularized tissue spaces, thereby reducing islet mass requirements and graft volumes. By delivering poly(ethylene glycol)-encapsulated islets to an isolated, retrievable, and highly vascularized site via a vasculogenic delivery vehicle, we demonstrate that a single pancreatic donor syngeneic islet mass exhibits improved long-term function over conventional alginate capsules and close integration with transplant site vasculature. In vivo tracking of bioluminescent allogeneic encapsulated islets in an autoimmune type 1 diabetes murine model showed enhanced cell survival over unencapsulated islets in the absence of chronic systemic immunosuppression. This method demonstrates a translatable alternative to intraperitoneal encapsulated islet transplant.


Assuntos
Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Tipo 1/terapia , Insulina/metabolismo , Transplante das Ilhotas Pancreáticas/métodos , Ilhotas Pancreáticas/citologia , Microfluídica/métodos , Polietilenoglicóis/química , Animais , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 1/patologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL
8.
Nat Mater ; 17(8): 732-739, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29867165

RESUMO

Islet transplantation is a promising therapy for type 1 diabetes. However, chronic immunosuppression to control rejection of allogeneic islets induces morbidities and impairs islet function. T effector cells are responsible for islet allograft rejection and express Fas death receptors following activation, becoming sensitive to Fas-mediated apoptosis. Here, we report that localized immunomodulation using microgels presenting an apoptotic form of the Fas ligand with streptavidin (SA-FasL) results in prolonged survival of allogeneic islet grafts in diabetic mice. A short course of rapamycin treatment boosted the immunomodulatory efficacy of SA-FasL microgels, resulting in acceptance and function of allografts over 200 days. Survivors generated normal systemic responses to donor antigens, implying immune privilege of the graft, and had increased CD4+CD25+FoxP3+ T regulatory cells in the graft and draining lymph nodes. Deletion of T regulatory cells resulted in acute rejection of established islet allografts. This localized immunomodulatory biomaterial-enabled approach may provide an alternative to chronic immunosuppression for clinical islet transplantation.


Assuntos
Materiais Biocompatíveis/metabolismo , Materiais Biocompatíveis/farmacologia , Proteína Ligante Fas/metabolismo , Proteína Ligante Fas/farmacologia , Imunomodulação/efeitos dos fármacos , Transplante das Ilhotas Pancreáticas/imunologia , Animais , Camundongos , Estreptavidina/metabolismo , Transplante Homólogo
9.
Biomaterials ; 172: 54-65, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29715595

RESUMO

The use of immunoisolating macrodevices in islet transplantation confers the benefit of safety and translatability by containing transplanted cells within a single retrievable device. To date, there has been limited development and characterization of synthetic poly(ethylene glycol) (PEG)-based hydrogel macrodevices for islet encapsulation and transplantation. Herein, we describe a two-component synthetic PEG hydrogel macrodevice system, designed for islet delivery to an extrahepatic islet transplant site, consisting of a hydrogel core cross-linked with a non-degradable PEG dithiol and a vasculogenic outer layer cross-linked with a proteolytically sensitive peptide to promote degradation and enhance localized vascularization. Synthetic PEG macrodevices exhibited equivalent passive molecular transport to traditional microencapsulation materials (e.g., alginate) and long-term stability in the presence of proteases in vitro and in vivo, out to 14 weeks in rats. Encapsulated islets demonstrated high viability within the device in vitro and the incorporation of RGD adhesive peptides within the islet encapsulating PEG hydrogel improved insulin responsiveness to a glucose challenge. In vivo, the implementation of a vasculogenic, degradable hydrogel layer at the outer interface of the macrodevice enhanced vascular density within the rat omentum transplant site, resulting in improved encapsulated islet viability in a syngeneic diabetic rat model. These results highlight the benefits of the facile PEG platform to provide controlled presentation of islet-supportive ligands, as well as degradable interfaces for the promotion of engraftment and overall graft efficacy.


Assuntos
Portadores de Fármacos/química , Transplante das Ilhotas Pancreáticas/métodos , Ilhotas Pancreáticas/metabolismo , Polietilenoglicóis/química , Alicerces Teciduais/química , Alginatos/metabolismo , Animais , Materiais Biocompatíveis/metabolismo , Reagentes de Ligações Cruzadas/química , Liberação Controlada de Fármacos , Humanos , Hidrogéis/metabolismo , Insulina/metabolismo , Masculino , Peptídeos/metabolismo , Permeabilidade , Ratos Endogâmicos Lew , Reologia/efeitos dos fármacos , Engenharia Tecidual/métodos
10.
Biomaterials ; 129: 139-151, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28342320

RESUMO

A major obstacle in the survival and efficacy of tissue engineered transplants is inadequate oxygenation, whereby unsupportive oxygen tensions result in significant cellular dysfunction and death within the implant. In a previous report, we developed an innovative oxygen generating biomaterial, termed OxySite, to provide supportive in situ oxygenation to cells and prevent hypoxia-induced damage. Herein, we explored the capacity of this biomaterial to mitigate hypoxic stress in both rat and nonhuman primate pancreatic islets by decreasing cell death, supporting metabolic activity, sustaining aerobic metabolism, preserving glucose responsiveness, and decreasing the generation of inflammatory cytokines. Further, the impact of supplemental oxygenation on in vivo cell function was explored by the transplantation of islets previously co-cultured with OxySite into a diabetic rat model. Transplant outcomes revealed significant improvement in graft efficacy for OxySite-treated islets, when transplanted within an extrahepatic site. These results demonstrate the potency of the OxySite material to mitigate activation of detrimental hypoxia-induced pathways in islets during culture and highlights the importance of in situ oxygenation on resulting islet transplant outcomes.


Assuntos
Materiais Biocompatíveis/farmacologia , Hipóxia/patologia , Ilhotas Pancreáticas/patologia , Oxigênio/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Anaerobiose , Animais , Apoptose/efeitos dos fármacos , Biomarcadores/metabolismo , Técnicas de Cocultura , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/terapia , Glicólise/efeitos dos fármacos , Inflamação/patologia , Ilhotas Pancreáticas/efeitos dos fármacos , Transplante das Ilhotas Pancreáticas , Macaca fascicularis , Masculino , Neovascularização Fisiológica/efeitos dos fármacos , Ratos Endogâmicos Lew , Sobrevivência de Tecidos/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA