RESUMO
Mutations in PRoline Rich Transmembrane protein 2 (PRRT2) cause pleiotropic syndromes including benign infantile epilepsy, paroxysmal kinesigenic dyskinesia, episodic ataxia, that share the paroxysmal character of the clinical manifestations. PRRT2 is a neuronal protein that plays multiple roles in the regulation of neuronal development, excitability, and neurotransmitter release. To better understand the physiopathology of these clinical phenotypes, we investigated PRRT2 interactome in mouse brain by a pulldown-based proteomic approach and identified α1 and α3 Na+/K+ ATPase (NKA) pumps as major PRRT2-binding proteins. We confirmed PRRT2 and NKA interaction by biochemical approaches and showed their colocalization at neuronal plasma membrane. The acute or constitutive inactivation of PRRT2 had a functional impact on NKA. While PRRT2-deficiency did not modify NKA expression and surface exposure, it caused an increased clustering of α3-NKA on the plasma membrane. Electrophysiological recordings showed that PRRT2-deficiency in primary neurons impaired NKA function during neuronal stimulation without affecting pump activity under resting conditions. Both phenotypes were fully normalized by re-expression of PRRT2 in PRRT2-deficient neurons. In addition, the NKA-dependent afterhyperpolarization that follows high-frequency firing was also reduced in PRRT2-silenced neurons. Taken together, these results demonstrate that PRRT2 is a physiological modulator of NKA function and suggest that an impaired NKA activity contributes to the hyperexcitability phenotype caused by PRRT2 deficiency.
Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Proteômica/métodos , Humanos , Transmissão SinápticaRESUMO
Transient Receptor Potential Vanilloid 1 (TRPV1) channels are non-selective cationic polymodal receptors gated by several different chemical and physical stimuli. TRPV1 receptors are distributed in several brain areas and interact with important neurotransmitter systems linked to mental disorders, such as endocannabinoid and opioid systems. The increasing number of results obtained in this field has recently attracted growing attention to these receptors as potential targets for the treatment of different psychiatric conditions. To review the available results on this topic, we searched on PubMed, Embase and Science Direct databases up to May 2020 using the following search string: "TRPV1", thus including a total of 48 studies. The results, still limited to preclinical studies, suggest that TRPV1 antagonism could represent a potential mechanism for the treatment of depression and anxiety, as well as for opioids, methamphetamine and cocaine addiction. Few available results consider schizophrenia-like behaviours, suggesting an intriguing role of TRPV1 receptors in the neurobiology of major psychoses. Single studies report the effectiveness of TRPV1 antagonists in animal models of obsessive-compulsive disorder and fibromyalgia. Future preclinical and clinical studies are required to shed further light on the feasibility of the use of TRPV1 modulators in psychopharmacology.
Assuntos
Comportamento Aditivo/tratamento farmacológico , Transtornos Mentais/tratamento farmacológico , Canais de Cátion TRPV/antagonistas & inibidores , Animais , Modelos Animais de DoençasRESUMO
The study of the pathomechanisms by which gene mutations lead to neurological diseases has benefit from several cellular and animal models. Recently, induced Pluripotent Stem Cell (iPSC) technologies have made possible the access to human neurons to study nervous system disease-related mechanisms, and are at the forefront of the research into neurological diseases. In this review, we will focalize upon genetic epilepsy, and summarize the most recent studies in which iPSC-based technologies were used to gain insight on the molecular bases of epilepsies. Moreover, we discuss the latest advancements in epilepsy cell modeling. At the two dimensional (2D) level, single-cell models of iPSC-derived neurons lead to a mature neuronal phenotype, and now allow a reliable investigation of synaptic transmission and plasticity. In addition, functional characterization of cerebral organoids enlightens neuronal network dynamics in a three-dimensional (3D) structure. Finally, we discuss the use of iPSCs as the cutting-edge technology for cell therapy in epilepsy.
Assuntos
Epilepsia/genética , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Neurais/citologia , Animais , Terapia Baseada em Transplante de Células e Tecidos , Epilepsia/terapia , Humanos , Camundongos , Modelos Biológicos , Organoides/citologia , Análise de Célula ÚnicaRESUMO
"Hypomyelination and Congenital Cataract", HCC (MIM #610532), is an autosomal recessive disorder characterized by congenital cataract and diffuse cerebral and peripheral hypomyelination. HCC is caused by deficiency of Hyccin, a protein whose biological role has not been clarified yet. Since the identification of the cell types expressing a protein of unknown function can contribute to define the physiological context in which the molecule is explicating its function, we analyzed the pattern of Hyccin expression in the central and peripheral nervous system (CNS and PNS). Using heterozygous mice expressing the b-galactosidase (LacZ) gene under control of the Hyccin gene regulatory elements, we show that the gene is primarily expressed in neuronal cells. Indeed, Hyccin-LacZ signal was identified in CA1 hippocampal pyramidal neurons, olfactory bulb, and cortical pyramidal neurons, while it did not colocalize with oligodendroglial or astrocytic markers. In the PNS, Hyccin was detectable only in axons isolated from newborn mice. In the brain, Hyccin transcript levels were higher in early postnatal development (postnatal days 2 and 10) and then declined in adult mice. In a model of active myelinogenesis, organotypic cultures of rat Schwann cells (SC)/Dorsal Root Ganglion (DRG) sensory neurons, Hyccin was detected along the neurites, while it was absent from SC. Intriguingly, the abundance of the molecule was upregulated at postnatal days 10 and 15, in the initial steps of myelinogenesis and then declined at 30 days when the process is complete. As Hyccin is primarily expressed in neurons and its mutation leads to hypomyelination in human patients, we suggest that the protein is involved in neuron-to-glia signalling to initiate or maintain myelination.
Assuntos
Catarata/genética , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Mutação , Neurônios/metabolismo , Proteínas Oncogênicas/genética , Animais , Animais Recém-Nascidos , Western Blotting , Encéfalo/citologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Catarata/congênito , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Células HeLa , Humanos , Hibridização In Situ , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica , Neurônios/citologia , Proteínas Oncogênicas/metabolismo , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Nervo Isquiático/crescimento & desenvolvimento , Nervo Isquiático/metabolismo , Nervo Isquiático/ultraestrutura , Fatores de Tempo , beta-Galactosidase/genética , beta-Galactosidase/metabolismoRESUMO
Post-tetanic potentiation (PTP) is a form of homosynaptic plasticity important for information processing and short-term memory in the nervous system. The synapsins, a family of synaptic vesicle (SV)-associated phosphoproteins, have been implicated in PTP. Although several synapsin functions are known to be regulated by phosphorylation by multiple protein kinases, the role of individual phosphorylation sites in synaptic plasticity is poorly understood. All the synapsins share a phosphorylation site in the N-terminal domain A (site 1) that regulates neurite elongation and SV mobilization. Here, we have examined the role of phosphorylation of synapsin domain A in PTP and other forms of short-term synaptic enhancement (STE) at synapses between cultured Helix pomatia neurons. To this aim, we cloned H. pomatia synapsin (helSyn) and overexpressed GFP-tagged wild-type helSyn or site-1-mutant helSyn mutated in the presynaptic compartment of C1-B2 synapses. We found that PTP at these synapses depends both on Ca2+/calmodulin-dependent and cAMP-dependent protein kinases, and that overexpression of the non-phosphorylatable helSyn mutant, but not wild-type helSyn, specifically impairs PTP, while not altering facilitation and augmentation. Our findings show that phosphorylation of site 1 has a prominent role in the expression of PTP, thus defining a novel role for phosphorylation of synapsin domain A in short-term homosynaptic plasticity.
Assuntos
Caracois Helix/fisiologia , Memória de Curto Prazo/fisiologia , Plasticidade Neuronal/fisiologia , Terminações Pré-Sinápticas/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Sinapsinas/metabolismo , Animais , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Expressão Gênica , Mutação , Fosforilação , Estrutura Terciária de Proteína/genética , Sinapsinas/genéticaRESUMO
Synapsins are synaptic vesicle-associated phosphoproteins implicated in the regulation of neurotransmitter release. Synapsin I is the major binding protein for the SH3 domain of the kinase c-Src in synaptic vesicles. Its binding leads to stimulation of synaptic vesicle-associated c-Src activity. We investigated the mechanism and role of Src activation by synapsins on synaptic vesicles. We found that synapsin is tyrosine phosphorylated by c-Src in vitro and on intact synaptic vesicles independently of its phosphorylation state on serine. Mass spectrometry revealed a single major phosphorylation site at Tyr(301), which is highly conserved in all synapsin isoforms and orthologues. Synapsin tyrosine phosphorylation triggered its binding to the SH2 domains of Src or Fyn. However, synapsin selectively activated and was phosphorylated by Src, consistent with the specific enrichment of c-Src in synaptic vesicles over Fyn or n-Src. The activity of Src on synaptic vesicles was controlled by the amount of vesicle-associated synapsin, which is in turn dependent on synapsin serine phosphorylation. Synaptic vesicles depleted of synapsin in vitro or derived from synapsin null mice exhibited greatly reduced Src activity and tyrosine phosphorylation of other synaptic vesicle proteins. Disruption of the Src-synapsin interaction by internalization of either the Src SH3 or SH2 domains into synaptosomes decreased synapsin tyrosine phosphorylation and concomitantly increased neurotransmitter release in response to Ca(2+)-ionophores. We conclude that synapsin is an endogenous substrate and activator of synaptic vesicle-associated c-Src and that regulation of Src activity on synaptic vesicles participates in the regulation of neurotransmitter release by synapsin.
Assuntos
Processamento de Proteína Pós-Traducional/fisiologia , Transdução de Sinais/fisiologia , Sinapsinas/metabolismo , Vesículas Sinápticas/enzimologia , Sinaptossomos/enzimologia , Quinases da Família src/metabolismo , Animais , Camundongos , Camundongos Knockout , Fosforilação , Ligação Proteica/genética , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Sinapsinas/deficiência , Domínios de Homologia de src/genéticaRESUMO
In developing neurons, synaptic vesicles (SVs) undergo cycles of exo-endocytosis along isolated axons. However, it is currently unknown whether SV exocytosis is regulated before synaptogenesis. Here, we show that cAMP-dependent pathways affect SV distribution and recycling in the axonal growth cone and that these effects are mediated by the SV-associated phosphoprotein synapsin I. The presence of synapsin I on SVs is necessary for the correct localization of the vesicles in the central portion of the growth cone. Phosphorylation of synapsin I by cAMP-dependent protein kinase (protein kinase A) causes the dissociation of the protein from the SV membrane, allowing diffusion of the vesicles to the periphery of the growth cone and enhancing their rate of recycling. These results provide new clues as to the bases of the well known activity of synapsin I in synapse maturation and indicate that molecular mechanisms similar to those operating at mature nerve terminals are active in developing neurons to regulate the SV life cycle before synaptogenesis.
Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Hipocampo/citologia , Hipocampo/embriologia , Neurônios/fisiologia , Sinapsinas/metabolismo , Animais , Axônios/fisiologia , Senescência Celular/fisiologia , AMP Cíclico/fisiologia , Cones de Crescimento/fisiologia , Cones de Crescimento/ultraestrutura , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Fosforilação , Ratos , Ratos Sprague-Dawley , Vesículas Sinápticas/fisiologia , Vesículas Sinápticas/ultraestruturaRESUMO
Olf/Ebf transcription factors have been implicated in numerous developmental processes, ranging from B-cell development to neuronal differentiation. We describe mice that carry a targeted deletion within the Ebf2 (O/E3) gene. In Ebf2-null mutants, because of defective migration of gonadotropin releasing hormone-synthesizing neurons, formation of the neuroendocrine axis (which is essential for pubertal development) is impaired, leading to secondary hypogonadism. In addition, Ebf2(-/-) peripheral nerves feature defective axon sorting, hypomyelination, segmental dysmyelination and axonal damage, accompanied by a sharp decrease in motor nerve conduction velocity. Ebf2-null mice reveal a novel genetic cause of hypogonadotropic hypogonadism and peripheral neuropathy in the mouse, disclosing an important role for Ebf2 in neuronal migration and nerve development.