Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
MAbs ; 13(1): 1870058, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33397191

RESUMO

Bispecific antibodies, engineered to recognize two targets simultaneously, demonstrate exceptional clinical potential for the therapeutic intervention of complex diseases. However, these molecules are often composed of multiple polypeptide chains of differing sequences. To meet industrial scale productivity, enforcing the correct quaternary assembly of these chains is critical. Here, we describe Chain Selectivity Assessment (CSA), a high-throughput method to rationally select parental monoclonal antibodies (mAbs) to make bispecific antibodies requiring correct heavy/light chain pairing. By deploying CSA, we have successfully identified mAbs that exhibit a native preference toward cognate chain pairing that enables the production of hetero-IgGs without additional engineering. Furthermore, CSA also identified rare light chains (LCs) that permit positive binding of the non-cognate arm in the common LC hetero-IgGs, also without engineering. This rational selection of parental mAbs with favorable developability characteristics is critical to the successful development of bispecific molecules with optimal manufacturability properties.


Assuntos
Anticorpos Biespecíficos/imunologia , Anticorpos Monoclonais/imunologia , Imunoglobulina G/imunologia , Cadeias Pesadas de Imunoglobulinas/imunologia , Cadeias Leves de Imunoglobulina/imunologia , Afinidade de Anticorpos/imunologia , Cromatografia em Gel/métodos , Cromatografia por Troca Iônica/métodos , Cromatografia Líquida/métodos , Eletroforese Capilar/métodos , Eletroforese em Gel de Poliacrilamida/métodos , Células HEK293 , Humanos , Espectrometria de Massas/métodos , Engenharia de Proteínas/métodos
2.
Biosci Rep ; 30(5): 359-64, 2010 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-19811448

RESUMO

UDCA (ursodeoxycholic acid) is used increasingly for the treatment of cholestatic liver diseases. Among other cytoprotective effects, this endogenous bile acid is a potent inhibitor of apoptosis, interfering with both intrinsic and extrinsic apoptotic pathways. In previous studies, we have demonstrated that the transforming growth factor beta1-induced E2F-1/Mdm2 (murine double minute 2)/p53 apoptotic pathway was an upstream molecular target of UDCA. In agreement with this, we have recently established p53 as a key molecular target in UDCA prevention of cell death. The tumour suppressor p53 is a well-described transcription factor that induces the expression of multiple different pro-apoptotic gene products. Its regulation involves a variety of signalling proteins and small molecules, and occurs at multiple levels, including transcription, translation and post-translation levels. In the present study, by using different biophysical techniques, we have investigated the possibility of a direct interaction between the p53 core domain, also referred to as the DNA-binding domain, and UDCA. Our in vitro analysis did not provide any evidence for direct binding between the bile acid UDCA and the p53 core domain.


Assuntos
Colagogos e Coleréticos/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Ácido Ursodesoxicólico/metabolismo , Humanos , Ligação Proteica , Desnaturação Proteica , Estrutura Terciária de Proteína , Proteína Supressora de Tumor p53/química
3.
Biochem J ; 426(2): 197-203, 2010 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-20001966

RESUMO

Frataxin is a highly conserved mitochondrial protein whose deficiency in humans results in Friedreich's ataxia (FRDA), an autosomal recessive disorder characterized by progressive ataxia and cardiomyopathy. Although its cellular function is still not fully clear, the fact that frataxin plays a crucial role in Fe-S assembly on the scaffold protein Isu is well accepted. In the present paper, we report the characterization of eight frataxin variants having alterations on two putative functional regions: the alpha1/beta1 acidic ridge and the conserved beta-sheet surface. We report that frataxin iron-binding capacity is quite robust: even when five of the most conserved residues from the putative iron-binding region are altered, at least two iron atoms per monomer can be bound, although with decreased affinity. Furthermore, we conclude that the acidic ridge is designed to favour function over stability. The negative charges have a functional role, but at the same time significantly impair frataxin's stability. Removing five of those charges results in a thermal stabilization of approximately 24 degrees C and reduces the inherent conformational plasticity. Alterations on the conserved beta-sheet residues have only a modest impact on the protein stability, highlighting the functional importance of residues 122-124.


Assuntos
Proteínas de Ligação ao Ferro/química , Proteínas de Ligação ao Ferro/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Ataxia de Friedreich/genética , Ataxia de Friedreich/metabolismo , Humanos , Ferro/metabolismo , Proteínas de Ligação ao Ferro/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Ligação Proteica , Estabilidade Proteica , Estrutura Secundária de Proteína , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Frataxina
4.
FEBS J ; 275(14): 3680-90, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18537827

RESUMO

Friedreich's ataxia results from a deficiency in the mitochondrial protein frataxin, which carries single point mutations in some patients. In the present study, we analysed the consequences of different disease-related mutations in vitro on the stability and dynamics of human frataxin. Two of the mutations, G130V and D122Y, were investigated for the first time. Analysis by CD spectroscopy demonstrated a substantial decrease in the thermodynamic stability of the variants during chemical and thermal unfolding (wild-type > W155R > I154F > D122Y > G130V), which was reversible in all cases. Protein dynamics was studied in detail and revealed that the mutants have distinct propensities towards aggregation. It was observed that the mutants have increased correlation times and different relative ratios between soluble and insoluble/aggregated protein. NMR showed that the clinical mutants retained a compact and relatively rigid globular core despite their decreased stabilities. Limited proteolysis assays coupled with LC-MS allowed the identification of particularly flexible regions in the mutants; interestingly, these regions included those involved in iron-binding. In agreement, the iron metallochaperone activity of the Friedreich's ataxia mutants was affected: some mutants precipitate upon iron binding (I154F and W155R) and others have a lower binding stoichiometry (G130V and D122Y). Our results suggest that, in heterozygous patients, the development of Friedreich's ataxia may result from a combination of reduced efficiency of protein folding and accelerated degradation in vivo, leading to lower than normal concentrations of frataxin. This hypothesis also suggests that, although quite different from other neurodegenerative diseases involving toxic aggregation, Friedreich's ataxia could also be linked to a process of protein misfolding due to specific destabilization of frataxin.


Assuntos
Ataxia de Friedreich/genética , Proteínas de Ligação ao Ferro/química , Proteínas de Ligação ao Ferro/genética , Mutação Puntual , Humanos , Ferro/metabolismo , Proteínas de Ligação ao Ferro/metabolismo , Cinética , Modelos Moleculares , Conformação Proteica , Dobramento de Proteína , Termodinâmica , Tripsina/metabolismo , Frataxina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA