Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Leukoc Biol ; 115(4): 760-770, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38324004

RESUMO

Melanoma is one of the most sensitive tumors to immune modulation, and the major challenge for melanoma patients' survival is immune checkpoint inhibitor (ICI) therapy. γδ T lymphocytes play an antitumoral role in a broad variety of tumors including melanoma and they are optimal candidates for cellular immunotherapy. Thus, a comprehensive analysis of the correlation between γδ T cells and immune checkpoint receptors in the context of melanoma was conducted, with the aim of devising an innovative combined immunotherapeutic strategy. In this study, using the GEPIA2.0 database, a significant positive correlation was observed between the expression of γδ T cell-related genes (TRGC1, TRGC2, TCRD) and immune checkpoint genes (PDCD1, HAVCR2, LAG3), highlighting the potential role of γδ T cells in the immune response within melanoma. Moreover, flow cytometry analysis unveiled a significant augmentation in the population of γδ T cells within melanoma lesions, which exhibited the expression of immune checkpoint receptors including LAG3, TIM3, and PD1. Analysis of single-cell RNA sequencing data revealed a significant enrichment and functional reprogramming of γδ T cell clusters in response to ICIs. Interestingly, the effects of ICI therapy varied between Vδ1 and Vδ2 γδ T cell subsets, with distinct changes in gene expression patterns. Last, a correlation analysis between γδ T cell abundance, immune checkpoint gene expression, and clinical outcomes in melanoma patients showed that low expression of immune checkpoint genes, including LAG3, HAVCR2, and PDCD1, was associated with improved 1-year overall survival, emphasizing the significance of these genes in predicting patient outcomes, potentially outweighing the impact of γδ T cell abundance. This study offers critical insights into the dynamic interaction between γδ T cells, immune checkpoint receptors, and melanoma, providing valuable perspectives for potential therapeutic avenues and predictive markers in this intricate interplay.


Assuntos
Melanoma , Humanos , Inibidores de Checkpoint Imunológico , Receptores de Antígenos de Linfócitos T gama-delta , Subpopulações de Linfócitos T
2.
Int J Mol Sci ; 24(10)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37240197

RESUMO

Multiple myeloma (MM) is a hematologic malignancy with a multistep evolutionary pattern, in which the pro-inflammatory and immunosuppressive microenvironment and genomic instability drive tumor evolution. MM microenvironment is rich in iron, released by pro-inflammatory cells from ferritin macromolecules, which contributes to ROS production and cellular damage. In this study, we showed that ferritin increases from indolent to active gammopathies and that patients with low serum ferritin had longer first line PFS (42.6 vs. 20.7 months and, p = 0.047, respectively) and OS (NR vs. 75.1 months and p = 0.029, respectively). Moreover, ferritin levels correlated with systemic inflammation markers and with the presence of a specific bone marrow cell microenvironment (including increased MM cell infiltration). Finally, we verified by bioinformatic approaches in large transcriptomic and single cell datasets that a gene expression signature associated with ferritin biosynthesis correlated with worse outcome, MM cell proliferation, and specific immune cell profiles. Overall, we provide evidence of the role of ferritin as a predictive/prognostic factor in MM, setting the stage for future translational studies investigating ferritin and iron chelation as new targets for improving MM patient outcome.


Assuntos
Gamopatia Monoclonal de Significância Indeterminada , Mieloma Múltiplo , Humanos , Mieloma Múltiplo/patologia , Ferritinas/genética , Ferritinas/metabolismo , Gamopatia Monoclonal de Significância Indeterminada/patologia , Medula Óssea/metabolismo , Perfilação da Expressão Gênica , Microambiente Tumoral/genética
3.
Front Immunol ; 14: 1098847, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36793708

RESUMO

In recent years, research has focused on colorectal cancer to implement modern treatment approaches to improve patient survival. In this new era, γδ T cells constitute a new and promising candidate to treat many types of cancer because of their potent killing activity and their ability to recognize tumor antigens independently of HLA molecules. Here, we focus on the roles that γδ T cells play in antitumor immunity, especially in colorectal cancer. Furthermore, we provide an overview of small-scale clinical trials in patients with colorectal cancer employing either in vivo activation or adoptive transfer of ex vivo expanded γδ T cells and suggest possible combinatorial approaches to treat colon cancer.


Assuntos
Neoplasias do Colo , Linfócitos T , Humanos , Receptores de Antígenos de Linfócitos T gama-delta , Imunoterapia Adotiva , Neoplasias do Colo/terapia , Transferência Adotiva
4.
Hematol Rep ; 15(1): 23-49, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36648882

RESUMO

Multiple myeloma (MM) is an incurable hematologic malignancy characterized by a multistep evolutionary pathway, with an initial phase called monoclonal gammopathy of undetermined significance (MGUS), potentially evolving into the symptomatic disease, often preceded by an intermediate phase called "smoldering" MM (sMM). From a biological point of view, genomic alterations (translocations/deletions/mutations) are already present at the MGUS phase, thus rendering their role in disease evolution questionable. On the other hand, we currently know that changes in the bone marrow microenvironment (TME) could play a key role in MM evolution through a progressive shift towards a pro-inflammatory and immunosuppressive shape, which may drive cancer progression as well as clonal plasma cells migration, proliferation, survival, and drug resistance. Along this line, the major advancement in MM patients' survival has been achieved by the introduction of microenvironment-oriented drugs (including immunomodulatory drugs and monoclonal antibodies). In this review, we summarized the role of the different components of the TME in MM evolution from MGUS as well as potential novel therapeutic targets/opportunities.

6.
Cells ; 10(11)2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34831116

RESUMO

The metabolic changes that occur in tumor microenvironment (TME) can influence not only the biological activity of tumor cells, which become more aggressive and auto sustained, but also the immune response against tumor cells, either producing ineffective responses or polarizing the response toward protumor activity. γδ T cells are a subset of T cells characterized by a plasticity that confers them the ability to differentiate towards different cell subsets according to the microenvironment conditions. On this basis, we here review the more recent studies focused on altered tumor metabolism and γδ T cells, considering their already known antitumor role and the possibility of manipulating their effector functions by in vitro and in vivo approaches. γδ T cells, thanks to their unique features, are themselves a valid alternative to overcome the limits associated with the use of conventional T cells, such as major histocompatibility complex (MHC) restriction, costimulatory signal and specific tumor-associated antigen recognition. Lipids, amino acids, hypoxia, prostaglandins and other metabolic changes inside the tumor microenvironment could reduce the efficacy of this important immune population and polarize γδ T cells toward IL17 producing cells that play a pro tumoral role. A deeper knowledge of this phenomenon could be helpful to formulate new immunotherapeutic approaches that target tumor metabolisms.


Assuntos
Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Linfócitos T/imunologia , Microambiente Tumoral/imunologia , Animais , Antígenos de Neoplasias/metabolismo , Ensaios Clínicos como Assunto , Humanos , Metabolismo dos Lipídeos
8.
J Leukoc Biol ; 108(2): 749-760, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32202356

RESUMO

Inflammatory bowel disease (IBD) remains a global health problem with a significant percentage of patients progressing to chronic inflammation and colitis-associated cancer (CAC). Whether or not γδ T cells contribute to initiation and maintenance of inflammation in IBD and in the development of CAC is not known. We have evaluated the frequency, phenotype, and functions of γδ T cells among tissue-infiltrating lymphocytes in healthy donors and IBD and CAC patients. Results show that Vδ1 T cells are the dominant γδ T-cell population in healthy tissue, whereas Vδ2 T significantly abound in chronic IBD. Vδ2 T cells produce more IFN-γ, TNF-α, and IL-17 than Vδ1 T cells in chronic inflamed IBD. In CAC patients no significant cytokine production was detected in tissue-resident Vδ1 T cells, but Vδ2 T cells produced remarkable amounts of IFN-γ and TNF-α; these data were confirmed by the analysis of an independent cohort of IBD transcriptomes. Moreover, transcriptomes of IBD patients revealed a clear-cut clusterization of genes related with the maintenance of the inflammatory status. In conclusion, our results demonstrating that Vδ2 T cells have a proinflammatory profile in chronic IBD are suggestive of their participation in IBD and CAC pathogenesis.


Assuntos
Colite/complicações , Colite/imunologia , Neoplasias do Colo/etiologia , Doenças Inflamatórias Intestinais/complicações , Doenças Inflamatórias Intestinais/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Adulto , Idoso , Biomarcadores , Doença Crônica , Colite/patologia , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Citocinas/metabolismo , Suscetibilidade a Doenças , Feminino , Perfilação da Expressão Gênica , Humanos , Imunofenotipagem , Doenças Inflamatórias Intestinais/patologia , Contagem de Linfócitos , Masculino , Pessoa de Meia-Idade
9.
Expert Opin Biol Ther ; 19(9): 887-895, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31220420

RESUMO

Introduction: Cancer immunotherapy relies on the development of an efficient and long-lasting anti-tumor response, generally mediated by cytotoxic T cells. γδ T cells possess distinctive features that justify their use in cancer immunotherapy. Areas covered: Here we will review our current knowledge on the functions of human γδ T cells that may be relevant in tumor immunity and the most recent advances in our understanding of how these functions are regulated in the tumor microenvironment. We will also discuss the major achievements and limitations of γδ T cell-based immunotherapy of cancer. Expert opinion: Several small-scale clinical trials have been conducted in cancer patients using either in vivo activation of γδ T cells or adoptive transfer of ex vivo-expanded γδ T cells. Both strategies are safe and give some clinical benefit to patients, thus providing a proof of principle for their utilization in addition to conventional therapies. However, low objective response rates have been obtained in both settings and therefore larger and well-controlled trials are needed. Discovering the factors which influence the success of γδ T cell-based immunotherapy will lead to a better understanding of their mechanism of action and to harness these cells for effective and durable anti-tumor responses.


Assuntos
Imunoterapia Adotiva , Linfócitos Intraepiteliais/imunologia , Neoplasias/terapia , Animais , Humanos , Linfócitos Intraepiteliais/transplante , Neoplasias/imunologia , Microambiente Tumoral
10.
Front Immunol ; 9: 1395, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29963061

RESUMO

γδ T cells possess cytotoxic antitumor activity mediated by production of proinflammatory cytokines, direct cytotoxic activity, and regulation of the biological functions of other cell types. Hence, these features have prompted the development of therapeutic strategies in which γδ T cells agonists or ex vivo-expanded γδ T cells are administered to tumor patients. Several studies have shown that γδ T cells are an important component of tumor-infiltrating lymphocytes in patients affected by different types of cancer and a recent analysis of ~18,000 transcriptomes from 39 human tumors identified tumor-infiltrating γδ T cells as the most significant favorable cancer-wide prognostic signature. However, the complex and intricate interactions between tumor cells, tumor microenvironment (TME), and tumor-infiltrating immune cells results in a balance between tumor-promoting and tumor-controlling effects, and γδ T cells functions are often diverted or impaired by immunosuppressive signals originating from the TME. This review focuses on the dangerous liason between γδ T cells and tumoral microenvironment and raises the possibility that strategies capable to reduce the immunosuppressive environment and increase the cytotoxic ability of γδ T cells may be the key factor to improve their utilization in tumor immunotherapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA