Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Med Oncol ; 41(8): 186, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918260

RESUMO

This comprehensive review delves into the multifaceted aspects of genipin, a bioactive compound derived from medicinal plants, focusing on its anti-cancer potential. The review begins by detailing the sources and phytochemical properties of genipin, underscoring its significance in traditional medicine and its transition into contemporary cancer research. It then explores the intricate relationship between genipin's chemical structure and its observed anti-cancer activity, highlighting the molecular underpinnings contributing to its therapeutic potential. This is complemented by a thorough analysis of preclinical studies, which investigates genipin's efficacy against various cancer cell lines and its mechanisms of action at the cellular level. A crucial component of the review is the examination of genipin's bioavailability and pharmacokinetics, providing insights into how the compound is absorbed, distributed, metabolized, and excreted in the body. Then, this review offers a general and updated overview of the anti-cancer studies of genipin and its derivatives based on its basic molecular mechanisms, induction of apoptosis, inhibition of cell proliferation, and disruption of cancer cell signaling pathways. We include information that complements the genipin study, such as toxicity data, and we differentiate this review by including commercial status, disposition, and regulation. Also, this review of genipin stands out for incorporating information on proposals for a technological approach through its load in nanotechnology to improve its bioavailability. The culmination of this information positions genipin as a promising candidate for developing novel anti-cancer drugs capable of supplementing or enhancing current cancer therapies.


Assuntos
Iridoides , Neoplasias , Humanos , Iridoides/farmacologia , Iridoides/química , Iridoides/uso terapêutico , Neoplasias/tratamento farmacológico , Compostos Fitoquímicos/uso terapêutico , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Animais , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Apoptose/efeitos dos fármacos
2.
Carbohydr Polym ; 336: 122121, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38670753

RESUMO

This study aimed to modify chitosan (CS) by gamma irradiation and use it as a surface coating of nanoparticles (NPs) fabricated of poly lactic-co-glycolic acid (PLGA) to create mostly biocompatible nanosystems that can transport drugs to neurons. Gamma irradiation produced irradiated CS (CSγ) with a very low molecular weight (15.2-19.2 kDa). Coating NPs-PLGA with CSγ caused significant changes in their Z potential, making it slightly positive (from -21.7 ± 2.8 mV to +7.1 ± 2.3 mV) and in their particle size (184.4 0.4 ± 7.9 nm to 211.9 ± 14.04 nm). However, these changes were more pronounced in NPs coated with non-irradiated CS (Z potential = +54.0 ± 1.43 mV, size = 348.1 ± 16.44 nm). NPs coated with CSγ presented lower cytotoxicity and similar internalization levels in SH-SY5Y neuronal cells than NPs coated with non-irradiated CS, suggesting higher biocompatibility. Highly biocompatible NPs are desirable as nanocarriers to deliver drugs to the brain, as they help maintain the structure and function of the blood-brain barrier. Therefore, the NPs developed in this study could be evaluated as drug-delivery systems for treating brain diseases.


Assuntos
Quitosana , Nanopartículas , Neurônios , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Quitosana/química , Humanos , Nanopartículas/química , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Portadores de Fármacos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Tamanho da Partícula , Raios gama
3.
Drug Dev Res ; 85(2): e22175, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38567708

RESUMO

Icaritin is a natural prenylated flavonoid derived from the Chinese herb Epimedium. The compound has shown antitumor effects in various cancers, especially hepatocellular carcinoma (HCC). Icaritin exerts its anticancer activity by modulating multiple signaling pathways, such as IL-6/JAK/STAT3, ER-α36, and NF-κB, affecting the tumor microenvironment and immune system. Several clinical trials have evaluated the safety and efficacy of icaritin in advanced HCC patients with poor prognoses, who are unsuitable for conventional therapies. The results have demonstrated that icaritin can improve survival, delay progression, and produce clinical benefits in these patients, with a favorable safety profile and minimal adverse events. Moreover, icaritin can enhance the antitumor immune response by regulating the function and phenotype of various immune cells, such as CD8+ T cells, MDSCs, neutrophils, and macrophages. These findings suggest that icaritin is a promising candidate for immunotherapy in HCC and other cancers. However, further studies are needed to elucidate the molecular mechanisms and optimal dosing regimens of icaritin and its potential synergistic effects with other agents. Therefore, this comprehensive review of the scientific literature aims to summarize advances in the knowledge of icaritin in preclinical and clinical studies as well as the pharmacokinetic, metabolism, toxicity, and mechanisms action to recognize the main challenge, gaps, and opportunities to develop a medication that cancer patients can use. Thus, our main objective was to clarify the current state of icaritin for use as an anticancer drug.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Linhagem Celular Tumoral , Microambiente Tumoral
4.
Mol Nutr Food Res ; 68(8): e2400063, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38600885

RESUMO

Phenethyl isothiocyanate (PEITC), a compound derived from cruciferous vegetables, has garnered attention for its anticancer properties. This review synthesizes existing research on PEITC, focusing on its mechanisms of action in combatting cancer. PEITC has been found to be effective against various cancer types, such as breast, prostate, lung, colon, and pancreatic cancers. Its anticancer activities are mediated through several mechanisms, including the induction of apoptosis (programmed cell death), inhibition of cell proliferation, suppression of angiogenesis (formation of new blood vessels that feed tumors), and reduction of metastasis (spread of cancer cells to new areas). PEITC targets crucial cellular signaling pathways involved in cancer progression, notably the Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-κB), Protein Kinase B (Akt), and Mitogen-Activated Protein Kinase (MAPK) pathways. These findings suggest PEITC's potential as a therapeutic agent against cancer. However, further research is necessary to determine the optimal dosage, understand its bioavailability, and assess potential side effects. This will be crucial for developing PEITC-based treatments that are both effective and safe for clinical use in cancer therapy.


Assuntos
Isotiocianatos , Neoplasias , Isotiocianatos/farmacologia , Humanos , Neoplasias/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Antineoplásicos/farmacologia , NF-kappa B/metabolismo , Antineoplásicos Fitogênicos/farmacologia
5.
J Biol Eng ; 17(1): 64, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37845737

RESUMO

Hydrogels are three-dimensional structures with specific features that render them useful for biomedical applications, such as tissue engineering scaffolds, drug delivery systems, and wound dressings. In recent years, there has been a significant increase in the search for improved mechanical properties of hydrogels derived from natural products to extend their applications in various fields, and there are different methods to obtain strengthened hydrogels. Cationic guar gum has physicochemical properties that allow it to interact with other polymers and generate hydrogels. This study aimed to develop an ultra-stretchable and self-healing hydrogel, evaluating the influence of adding PolyOX [poly(ethylene oxide)] on the mechanical properties and the interaction with cationic guar gum for potential tissue engineering applications. We found that variations in PolyOX concentrations and pH changes influenced the mechanical properties of cationic guar gum hydrogels. After optimization experiments, we obtained a novel hydrogel, which was semi-crystalline, highly stretchable, and with an extensibility area of approximately 400 cm2, representing a 33-fold increase compared to the hydrogel before being extended. Moreover, the hydrogel presented a recovery of 96.8% after the self-healing process and a viscosity of 153,347 ± 4,662 cP. Therefore, this novel hydrogel exhibited optimal mechanical and chemical properties and could be suitable for a broad range of applications in different fields, such as tissue engineering, drug delivery, or food storage.

6.
Cancer Cell Int ; 23(1): 180, 2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37633886

RESUMO

Dietary compounds in cancer prevention have gained significant consideration as a viable method. Indole-3-carbinol (I3C) and 3,3'-diindolylmethane (DIM) are heterocyclic and bioactive chemicals found in cruciferous vegetables like broccoli, cauliflower, cabbage, and brussels sprouts. They are synthesized after glycolysis from the glucosinolate structure. Clinical and preclinical trials have evaluated the pharmacokinetic/pharmacodynamic, effectiveness, antioxidant, cancer-preventing (cervical dysplasia, prostate cancer, breast cancer), and anti-tumor activities of I3C and DIM involved with polyphenolic derivatives created in the digestion showing promising results. However, the exact mechanism by which they exert anti-cancer and apoptosis-inducing properties has yet to be entirely understood. Via this study, we update the existing knowledge of the state of anti-cancer investigation concerning I3C and DIM chemicals. We have also summarized; (i) the recent advancements in the use of I3C/DIM as therapeutic molecules since they represent potentially appealing anti-cancer agents, (ii) the available literature on the I3C and DIM characterization, and the challenges related to pharmacologic properties such as low solubility, and poor bioavailability, (iii) the synthesis and semi-synthetic derivatives, (iv) the mechanism of anti-tumor action in vitro/in vivo, (v) the action in cellular signaling pathways related to the regulation of apoptosis and anoikis as well as the cell cycle progression and cell proliferation such as peroxisome proliferator-activated receptor and PPARγ agonists; SR13668, Akt inhibitor, cyclins regulation, ER-dependent-independent pathways, and their current medical applications, to recognize research opportunities to potentially use these compounds instead chemotherapeutic synthetic drugs.

7.
Front Pharmacol ; 14: 1206334, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37346293

RESUMO

Being the first or second cause of death worldwide, cancer represents the most significant clinical, social, and financial burden of any human illness. Despite recent progresses in cancer diagnosis and management, traditional cancer chemotherapies have shown several adverse side effects and loss of potency due to increased resistance. As a result, one of the current approaches is on with the search of bioactive anticancer compounds from natural sources. Neopeltolide is a marine-derived macrolide isolated from deep-water sponges collected off Jamaica's north coast. Its mechanism of action is still under research but represents a potentially promising novel drug for cancer therapy. In this review, we first illustrate the general structural characterization of neopeltolide, the semi-synthetic derivatives, and current medical applications. In addition, we reviewed its anticancer properties, primarily based on in vitro studies, and the possible clinical trials. Finally, we summarize the recent progress in the mechanism of antitumor action of neopeltolide. According to the information presented, we identified two principal challenges in the research, i) the effective dose which acts neopeltolide as an anticancer compound, and ii) to unequivocally establish the mechanism of action by which the compound exerts its antiproliferative effect.

8.
Life (Basel) ; 13(2)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36836894

RESUMO

Lithium is a therapeutic cation used to treat bipolar disorders but also has some important features as an anti-cancer agent. In this review, we provide a general overview of lithium, from its transport into cells, to its innovative administration forms, and based on genomic, transcriptomic, and proteomic data. Lithium formulations such as lithium acetoacetate (LiAcAc), lithium chloride (LiCl), lithium citrate (Li3C6H5O7), and lithium carbonate (Li2CO3) induce apoptosis, autophagy, and inhibition of tumor growth and also participate in the regulation of tumor proliferation, tumor invasion, and metastasis and cell cycle arrest. Moreover, lithium is synergistic with standard cancer therapies, enhancing their anti-tumor effects. In addition, lithium has a neuroprotective role in cancer patients, by improving their quality of life. Interestingly, nano-sized lithium enhances its anti-tumor activities and protects vital organs from the damage caused by lipid peroxidation during tumor development. However, these potential therapeutic activities of lithium depend on various factors, such as the nature and aggressiveness of the tumor, the type of lithium salt, and its form of administration and dosage. Since lithium has been used to treat bipolar disorder, the current study provides an overview of its role in medicine and how this has changed. This review also highlights the importance of this repurposed drug, which appears to have therapeutic cancer potential, and underlines its molecular mechanisms.

9.
Curr Issues Mol Biol ; 44(5): 2054-2068, 2022 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-35678668

RESUMO

Cervical cancer (CC) is one of the most common cancers in women, and is linked to human papillomavirus (HPV) infection. The virus oncoprotein E6 binds to p53, resulting in its degradation and allowing uncontrolled cell proliferation. Meanwhile, the HPV E7 protein maintains host cell differentiation by targeting retinoblastoma tumor suppressor. The host cell can ubiquitinate E6 and E7 through UBE2L3, whose expression depends on the interaction between the aryl hydrocarbon receptor (AhR) with Xenobiotic Responsive Elements (XREs) located in the UBE2L3 gene promoter. In this study, we used cell culture to determine the effect of indole-3-carbinol (I3C) over cellular viability, apoptosis, cell proliferation, and mRNA levels of UBE2L3 and CYP1A1. In addition, patients' samples were used to determine the mRNA levels of UBE2L3 and CYP1A1 genes. We found that I3C promotes the activation of AhR and decreases cell proliferation, possibly through UBE2L3 mRNA induction, which would result in the ubiquitination of HPV E7. Since there is a strong requirement for selective and cost-effective cancer treatments, natural AhR ligands such as I3C could represent a novel strategy for cancer treatment.

10.
Cancer Cell Int ; 21(1): 649, 2021 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-34863151

RESUMO

BACKGROUND: The ESR1 gene suffers methylation changes in many types of cancers, including breast cancer (BC), the most frequently diagnosed cancer in women that is also present in men. Methylation at promoter A of ESR1 is the worse prognosis in terms of overall survival; thus, the early detection, prognostic, and prediction of therapy involve some methylation biomarkers. METHODS: Therefore, our study aimed to examine the methylation levels at the ESR1 gene in samples from Mexican BC patients and its possible association with menopausal status. RESULTS: We identified a novel 151-bp CpG island in the promoter A of the ESR1 gene. Interestingly, methylation levels at this CpG island in positive ERα tumors were approximately 50% less than negative ERα or control samples. Furthermore, methylation levels at ESR1 were associated with menopausal status. In postmenopausal patients, the methylation levels were 1.5-fold higher than in premenopausal patients. Finally, according to tumor malignancy, triple-negative cancer subtypes had higher ESR1 methylation levels than luminal/HER2+ or luminal A subtypes. CONCLUSIONS: Our findings suggest that methylation at this novel CpG island might be a promising prognosis marker.

11.
Cell Mol Biol (Noisy-le-grand) ; 67(3): 113-117, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34933725

RESUMO

Chitosan and poly(3-hydroxybutyrate) are non-toxic, biodegradable, and biocompatible polymers extensively used in regenerative medicine. However, it is unknown whether the chemical combination of these polymers can produce a biomaterial that induces an appropriate cellular response in vitro in mammalian cells. This study aimed to test the ability of a novel salt-leached polyurethane scaffold of chitosan grafted with poly(3-hydroxybutyrate) to support the growth of three mammalian cell lines of different origin: a) HEK-293 cells, b) i28 mouse myoblasts, and c) human dermal fibroblasts. The viability of the cells was assessed by either evaluation of their capacity to maintain the expression of the green fluorescent protein by adenoviral transduction or by esterase activity and plasma membrane integrity. The results indicated that the three cell lines attached well to the scaffold; however, when i28 cells were induced to differentiate, they did not produce morphologically distinct myofibers, and cell growth ceased. In conclusion, the findings reveal that, altogether, these observations suggest that this foam scaffold supports cell growth and proliferation but may not apply to all cell types. Hence, one crucial question yet to be resolved is a poly (saccharide-ester-urethane) derivative with a nano-topography that elicits a similar cellular response for different biological environments.


Assuntos
Poliésteres/química , Polissacarídeos/química , Poliuretanos/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/metabolismo , Células HEK293 , Humanos , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Mioblastos/citologia , Mioblastos/metabolismo
12.
Cell Mol Biol (Noisy-le-grand) ; 67(1): 73-79, 2021 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-34817365

RESUMO

Xanthan gum (XG) and polyvinylpyrrolidone (PVP) are two polymers with low toxicity, high biocompatibility, biodegradability, and high hydrophilicity, making them promising candidates for multiple medical aspects. The present work aimed to synthesize a hydrogel from a mixture of XG and PVP and crosslinked by gamma irradiation. We assessed the hydrogel through a series of physicochemical (FT-IR, TGA, SEM, and percentage of swelling) and biological (stability of the hydrogel in cell culture medium) methods that allowed to determine its applicability. The structural evaluation by infrared spectrum demonstrated that a crosslinked hydrogel was obtained from the combination of polymers. The calorimetric test and swelling percentage confirmed the formation of the bonds responsible for the crosslinked structure. The calorimetric test evidenced that the hydrogel was resistant to decomposition in contrast to non- irradiated material. The determination of the swelling degree showed constant behavior over time, indicating a structure resistant to hydrolysis. This phenomenon also occurred during the test of stability in a cell culture medium. Additionally, microscopic analysis of the sample revealed an amorphous matrix with the presence of porosity. Thus, the findings reveal the synthesis of a novel material that has desirable attributes for its potential application in pharmaceutical and biomedical areas.


Assuntos
Raios gama , Hidrogéis/efeitos da radiação , Polímeros/efeitos da radiação , Polissacarídeos Bacterianos/efeitos da radiação , Povidona/efeitos da radiação , Hidrogéis/síntese química , Hidrogéis/química , Microscopia Eletrônica de Varredura , Modelos Químicos , Estrutura Molecular , Polímeros/síntese química , Polímeros/química , Polissacarídeos Bacterianos/síntese química , Polissacarídeos Bacterianos/química , Porosidade , Povidona/síntese química , Povidona/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Temperatura , Termogravimetria/métodos
13.
Cell Mol Biol (Noisy-le-grand) ; 67(1): 64-72, 2021 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-34817366

RESUMO

The purpose of our study was to obtain new wound dressings in the form of hydrogels that promote wound healing taking advantage of the broad activities of elastin (ELT) in physiological processes. The hydrogel of ELT and polyvinylpyrrolidone (PVP; ELT-PVP) was obtained by cross-linking induced by gamma irradiation at a dose of 25 kGy. The physicochemical changes attributed to cross-linking were analyzed through scanning electron microscopy (SEM), infrared spectroscopy analysis with Fourier transform (FTIR), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). Furthermore, we performed a rheological study to determine the possible changes in the fluidic macroscopic properties produced by the cross-linking method. Finally, we accomplished viability and proliferation analyses of human dermal fibroblasts in the presence of the hydrogel to evaluate its biological characteristics. The hydrogel exhibited a porous morphology, showing interconnected porous with an average pore size of 16 ± 8.42 µm. The analysis of FTIR, DSC, and TGA revealed changes in the chemical structure of the ELT-PVP hydrogel after the irradiation process. Also, the hydrogel exhibited a rheological behavior of a pseudoplastic and thixotropic fluid. The hydrogel was biocompatible, demonstrating high cell viability, whereas ELT presented low biocompatibility at high concentrations. In summary, the hydrogel obtained by gamma irradiation revealed the appropriate morphology to be applied as a wound dressing. Interestingly, the hydrogel exhibited a higher percentage of cell viability compared with ELT, suggesting that the cross-linking of ELT with PVP is a suitable strategy for biological applications of ELT without generating cellular damage.


Assuntos
Materiais Biocompatíveis/metabolismo , Elastina/metabolismo , Curativos Oclusivos , Polimerização/efeitos da radiação , Povidona/metabolismo , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Varredura Diferencial de Calorimetria/métodos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Elastina/química , Elastina/ultraestrutura , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Humanos , Hidrogéis/química , Hidrogéis/metabolismo , Hidrogéis/farmacologia , Microscopia Eletrônica de Varredura , Povidona/química , Povidona/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Termogravimetria/métodos , Cicatrização/efeitos dos fármacos
14.
Front Pharmacol ; 12: 704197, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34483907

RESUMO

In the last decades, the search for natural products with biological applications as alternative treatments for several inflammatory diseases has increased. In this respect, terpenes are a family of organic compounds obtained mainly from plants and trees, such as tea, cannabis, thyme, and citrus fruits like lemon or mandarin. These molecules present attractive biological properties such as analgesic and anticonvulsant activities. Furthermore, several studies have demonstrated that certain terpenes could reduce inflammation symptoms by decreasing the release of pro-inflammatory cytokines for example, the nuclear transcription factor-kappa B, interleukin 1, and the tumor necrosis factor-alpha. Thus, due to various anti-inflammatory drugs provoking side effects, the search and analysis of novel therapeutics treatments are attractive. In this review, the analysis of terpenes' chemical structure and their mechanisms in anti-inflammatory functions are addressed. Additionally, we present a general analysis of recent investigations about their applications as an alternative treatment for inflammatory diseases. Furthermore, we focus on terpenes-based nanoformulations and employed dosages to offer a global perspective of the state-of-the-art.

15.
Front Mol Biosci ; 8: 649395, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34540888

RESUMO

Resveratrol is a polyphenolic stilbene derivative widely present in grapes and red wine. Broadly known for its antioxidant effects, numerous studies have also indicated that it exerts anti-inflammatory and antiaging abilities and a great potential in cancer therapy. Regrettably, the oral administration of resveratrol has pharmacokinetic and physicochemical limitations such as hampering its effects so that effective administration methods are demanding to ensure its efficiency. Thus, the present review explores the published data on the application of resveratrol nanoformulations in cancer therapy, with the use of different types of nanodelivery systems. Mechanisms of action with a potential use in cancer therapy, negative effects, and the influence of resveratrol nanoformulations in different types of cancer are also highlighted. Finally, the toxicological features of nanoresveratrol are also discussed.

16.
Carbohydr Polym ; 270: 117916, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34364636

RESUMO

A novel brush-like poly(2-aminoethyl methacrylate) (PAEMA) was grafted onto chitosan (CS) through gamma radiation-induced polymerization. The copolymer (CS-g-PAEMA) was used to prepare a sodium acetate leached poly(urethane-urea) scaffold. The above derivatives were developed, synthesized, and characterized to meet the specific characteristics of biomaterials. The results revealed that this method is an easy and successful route for grafting PAEMA onto CS. The feasibility of preparing a CS-g-PAEMA polyurethane foam was confirmed by mechanical, morphometric, spectroscopic, and cytotoxic studies. The scaffold showed high biocompatibility both in vitro and in vivo. The first experiment proved that CS-based polyurethane efficiently allows the dynamic culturing of human fibroblast cells. Additionally, an in vivo study in a murine model indicated a complete integration of the scaffold to surrounding subcutaneous tissue as supported by the histological and histochemical assessments. The aforementioned results support the use of CS-g-PAEMA poly(saccharide-urethane) as a model of in vitro-engineered skin.


Assuntos
Quitosana/química , Metacrilatos/química , Polímeros/química , Poliuretanos/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Materiais Biocompatíveis/química , Fibroblastos/citologia , Raios gama , Humanos , Espectroscopia de Ressonância Magnética/métodos , Camundongos , Polimerização , Pele/citologia , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
17.
Mar Pollut Bull ; 172: 112854, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34418713

RESUMO

The Vina del Mar - Concón Coastal strip is well known for its urban beaches, which play an essential role in the national economy. With extreme urban development, these beaches have become more polluted by litter. This paper evaluates the abundance, spatio-temporal distribution, typology, and sources of beach litter in 14 sectors located inside this coastal strip. A total of 19,886 litter items were collected and grouped into 50 different categories (11 litter typologies). Overall average litter abundance was 0.21 items/m2 while during the fall and winter averages were 0.25 items/m2 and 0.17 items/m2. Values changed along the area and between seasons. Plastics, cigarette butts and paper-cardboard typologies dominated the samples with 42% (0.088 items/m2), 25.4% (0.053 items/m2) and 20.8% (0.043 items/m2).


Assuntos
Praias , Resíduos , Chile , Monitoramento Ambiental , Plásticos , Estações do Ano , Resíduos/análise
18.
Molecules ; 26(7)2021 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-33916823

RESUMO

Nanoparticles possess a huge potential to be employed in numerous biomedical purposes; their applications may include drug delivery systems, gene therapy, and tissue engineering. However, the in vivo use in biomedical applications requires that nanoparticles exhibit sterility. Thus, diverse sterilization techniques have been developed to remove or destroy microbial contamination. The main sterilization methods include sterile filtration, autoclaving, ionizing radiation, and nonionizing radiation. Nonetheless, the sterilization processes can alter the stability, zeta potential, average particle size, and polydispersity index of diverse types of nanoparticles, depending on their composition. Thus, these methods may produce unwanted effects on the nanoparticles' characteristics, affecting their safety and efficacy. Moreover, each sterilization method possesses advantages and drawbacks; thus, the suitable method's choice depends on diverse factors such as the formulation's characteristics, batch volume, available methods, and desired application. In this article, we describe the current sterilization methods of nanoparticles. Moreover, we discuss the advantages and drawbacks of these methods, pointing out the changes in nanoparticles' biological and physicochemical characteristics after sterilization. Our main objective was to offer a comprehensive overview of terminal sterilization processes of nanoparticles for biomedical applications.


Assuntos
Tecnologia Biomédica , Nanopartículas/química , Esterilização , Filtração , Radiação Ionizante
19.
Phytother Res ; 35(7): 3533-3557, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33590924

RESUMO

Oxidative stress is the imbalance between reactive oxygen species (ROS) production, and accumulation and the ability of a biological system to clear these reactive products. This imbalance leads to cell and tissue damage causing several disorders in human body, such as neurodegeneration, metabolic problems, cardiovascular diseases, and cancer. Cucurbitaceae family consists of about 100 genera and 1,000 species of plants including mostly tropical, annual or perennial, monoecious, and dioecious herbs. The plants from Cucurbita species are rich sources of phytochemicals and act as a rich source of antioxidants. The most important phytochemicals present in the cucurbits are cucurbitacins, saponins, carotenoids, phytosterols, and polyphenols. These bioactive phyto-constituents are responsible for the pharmacological effects including antioxidant, antitumor, antidiabetic, hepatoprotective, antimicrobial, anti-obesity, diuretic, anti-ulcer activity, and antigenotoxic. A wide number of in vitro and in vivo studies have ascribed these health-promoting effects of Cucurbita genus. Results of clinical trials suggest that Cucurbita provides health benefits for diabetic patients, patients with benign prostate hyperplasia, infertile women, postmenopausal women, and stress urinary incontinence in women. The intend of the present review is to focus on the protective role of Cucurbita spp. phytochemicals on oxidative stress-related disorders on the basis of preclinical and human studies. The review will also give insights on the in vitro and in vivo antioxidant potential of the Cucurbitaceae family as a whole.


Assuntos
Antioxidantes , Cucurbita , Cucurbitaceae , Compostos Fitoquímicos , Antioxidantes/farmacologia , Cucurbita/química , Cucurbitaceae/química , Humanos , Estresse Oxidativo , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia
20.
J Cancer Res Ther ; 16(6): 1279-1286, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33342785

RESUMO

CONTEXT: Four single-nucleotide polymorphisms (SNPs) in Mexican patients and their association with the development of breast cancer (BC). AIMS: This work is focused on determining the association of fibroblast growth factor receptor (rs12196489), TOX3 (rs3803662), human telomerase reverse transcriptase (h TERT, rs10069690), and FTO (rs17817449) polymorphisms and BC in a cohort of Mexican women. SETTINGS AND DESIGN: The study included 56 patients with a confirmed diagnosis of BC and 83 controls. Clinical characteristics were obtained from medical records. SUBJECTS AND METHODS: Genomic DNA from the samples was obtained from lymphocytes, and the genotyping of rs12196489, rs3803662, rs10069690, and rs17817449 polymorphisms was performed by real-time polymerase chain reaction using specific TaqMan probes. Statistical analysis was assessed to evaluate the distribution of genotype frequencies between cases and controls. STATISTICAL ANALYSIS: We used the STATA Statistical Package (version 10.1; STATA Corp., College Station, TX, USA). Student's t-test, χ2 test, or Fisher's exact test was used to evaluate the distribution of genotype frequencies. RESULTS: No statistical differences in allelic and genotypic frequencies were found between patients with BC and controls for SNPs: rs1219648, rs3803662, and rs17817449. Interestingly, according to the χ2 test, a significant difference was exhibited for rs10069690 (odds ratio = 0.095; 95% confidence interval = 0.038-0.214; P < 0.001). CONCLUSIONS: The h TERT (rs10069690) polymorphism might be associated with BC in Mexican women. Nevertheless, additional studies in a larger cohort are required to confirm this association and to possibly use this polymorphism as a potential biomarker in the early diagnosis of BC.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Adulto , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Proteínas Reguladoras de Apoptose/genética , Biomarcadores Tumorais/sangue , Neoplasias da Mama/sangue , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/patologia , Estudos de Casos e Controles , Estudos de Coortes , Feminino , Predisposição Genética para Doença , Genótipo , Humanos , México/epidemiologia , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Telomerase/genética , Transativadores/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA