Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Mol Biol Cell ; 29(5): 557-574, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29298841

RESUMO

Epithelial cells can acquire invasive and tumorigenic capabilities through epithelial-mesenchymal-transition (EMT). The glycan-binding protein galectin-8 (Gal-8) activates selective ß1-integrins involved in EMT and is overexpressed by certain carcinomas. Here we show that Gal-8 overexpression or exogenous addition promotes proliferation, migration, and invasion in nontumoral Madin-Darby canine kidney (MDCK) cells, involving focal-adhesion kinase (FAK)-mediated transactivation of the epidermal growth factor receptor (EGFR), likely triggered by α5ß1integrin binding. Under subconfluent conditions, Gal-8-overexpressing MDCK cells (MDCK-Gal-8H) display hallmarks of EMT, including decreased E-cadherin and up-regulated expression of vimentin, fibronectin, and Snail, as well as increased ß-catenin activity. Changes related to migration/invasion included higher expression of α5ß1 integrin, extracellular matrix-degrading MMP13 and urokinase plasminogen activator/urokinase plasminogen activator receptor (uPA/uPAR) protease systems. Gal-8-stimulated FAK/EGFR pathway leads to proteasome overactivity characteristic of cancer cells. Yet MDCK-Gal-8H cells still develop apical/basolateral polarity reverting EMT markers and proteasome activity under confluence. This is due to the opposite segregation of Gal-8 secretion (apical) and ß1-integrins distribution (basolateral). Strikingly, MDCK-Gal-8H cells acquired tumorigenic potential, as reflected in anchorage-independent growth in soft agar and tumor generation in immunodeficient NSG mice. Therefore, Gal-8 can promote oncogenic-like transformation of epithelial cells through partial and reversible EMT, accompanied by higher proliferation, migration/invasion, and tumorigenic properties.


Assuntos
Transição Epitelial-Mesenquimal , Receptores ErbB/metabolismo , Galectinas/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Transdução de Sinais , Animais , Caderinas/metabolismo , Carcinogênese , Cães , Quinase 1 de Adesão Focal/metabolismo , Humanos , Integrina beta1/metabolismo , Células Madin Darby de Rim Canino , Masculino , Camundongos , Neoplasias Experimentais , Proteínas Recombinantes/metabolismo , Transfecção , Regulação para Cima , Ativador de Plasminogênio Tipo Uroquinase/metabolismo
2.
Biol Res ; 49(1): 33, 2016 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-27459991

RESUMO

BACKGROUND: Glioblastoma is one of the most aggressive cancers of the brain. Malignant traits of glioblastoma cells include elevated migration, proliferation and survival capabilities. Galectins are unconventionally secreted glycan-binding proteins that modulate processes of cell adhesion, migration, proliferation and apoptosis by interacting with beta-galactosides of cell surface glycoproteins and the extracellular matrix. Galectin-8 is one of the galectins highly expressed in glioblastoma cells. It has a unique selectivity for terminally sialylated glycans recently found enhanced in these highly malignant cells. A previous study in glioblastoma cell lines reported that Gal-8 coating a plastic surface stimulates two-dimensional motility. Because in other cells Gal-8 arrests proliferation and induces apoptosis, here we extend its study by analyzing all of these processes in a U87 glioblastoma cell model. METHODS: We used immunoblot and RT-PCR for Gal-8 expression analysis, recombinant Gal-8 produced in a bacteria system for Gal-8 treatment of the cells, and shRNA in lentivirus transduction for Gal-8 silencing. Cell migration as assessed in transwell filters. Cell proliferation, cell cycle and apoptosis were analyzed by FACS. RESULTS: Gal-8 as a soluble stimulus triggered chemotactic migration of U87 cells across the polycarbonate filter of transwell chambers, almost as intensively as fetal bovine serum. Unexpectedly, Gal-8 also enhanced U87 cell growth. Co-incubation of Gal-8 with lactose, which blocks galectin-glycan interactions, abrogated both effects. Immunoblot showed Gal-8 in conditioned media reflecting its secretion. U87 cells transduced with silencing shRNA in a lentiviral vector expressed and secreted 30-40 % of their normal Gal-8 levels. These cells maintained their migratory capabilities, but decreased their proliferation rate and underwent higher levels of apoptosis, as revealed by flow cytometry analysis of cell cycle, CFSE and activated caspase-3 staining. Proliferation seemed to be more sensitive than migration to Gal-8 expression levels. CONCLUSIONS: Gal-8, either secreted or exogenously enriched in the media, and acting through extracellular glycan interactions, constitutes a strong stimulus of directional migration in glioblastoma U87 cells and for the first time emerges as a factor that promotes proliferation and prevents apoptosis in cancerous cells. These properties could potentially contribute to the exaggerated malignancy of glioblastoma cells.


Assuntos
Neoplasias Encefálicas/patologia , Galectinas/fisiologia , Glioblastoma/patologia , Animais , Apoptose/fisiologia , Neoplasias Encefálicas/genética , Bovinos , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Citometria de Fluxo/métodos , Galectina 1/análise , Galectina 1/fisiologia , Galectina 3/análise , Galectina 3/fisiologia , Galectinas/análise , Galectinas/farmacologia , Glioblastoma/genética , Humanos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo , Células Tumorais Cultivadas
3.
Biol. Res ; 49: 1-10, 2016. ilus, graf
Artigo em Inglês | LILACS | ID: biblio-950860

RESUMO

BACKGROUND: Glioblastoma is one of the most aggressive cancers of the brain. Malignant traits of glioblastoma cells include elevated migration, proliferation and survival capabilities. Galectins are unconventionally secreted glycan-binding proteins that modulate processes of cell adhesion, migration, proliferation and apoptosis by interacting with beta-galactosides of cell surface glycoproteins and the extracellular matrix. Galectin-8 is one of the galectins highly expressed in glioblastoma cells. It has a unique selectivity for terminally sialylated glycans recently found enhanced in these highly malignant cells. A previous study in glioblastoma cell lines reported that Gal-8 coating a plastic surface stimulates two-dimensional motility. Because in other cells Gal-8 arrests proliferation and induces apoptosis, here we extend its study by analyzing all of these processes in a U87 glioblastoma cell mode.l METHODS: We used immunoblot and RT-PCR for Gal-8 expression analysis, recombinant Gal-8 produced in a bacteria system for Gal-8 treatment of the cells, and shRNA in lentivirus transduction for Gal-8 silencing. Cell migration as assessed in transwell filters. Cell proliferation, cell cycle and apoptosis were analyzed by FACS. RESULTS: Gal-8 as a soluble stimulus triggered chemotactic migration of U87 cells across the polycarbonate filter of transwell chambers, almost as intensively as fetal bovine serum. Unexpectedly, Gal-8 also enhanced U87 cell growth. Co-incubation of Gal-8 with lactose, which blocks galectin-glycan interactions, abrogated both effects. Immunoblot showed Gal-8 in conditioned media reflecting its secretion. U87 cells transduced with silencing shRNA in a lentiviral vector expressed and secreted 30-40 % of their normal Gal-8 levels. These cells maintained their migratory capabilities, but decreased their proliferation rate and underwent higher levels of apoptosis, as revealed by flow cytometry analysis of cell cycle, CFSE and activated caspase-3 staining. Proliferation seemed to be more sensitive than migration to Gal-8 expression levels. CONCLUSIONS: Gal-8, either secreted or exogenously enriched in the media, and acting through extracellular glycan interactions, constitutes a strong stimulus of directional migration in glioblastoma U87 cells and for the first time emerges as a factor that promotes proliferation and prevents apoptosis in cancerous cells. These properties could potentially contribute to the exaggerated malignancy of glioblastoma cells.


Assuntos
Humanos , Animais , Bovinos , Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Galectinas/fisiologia , Fatores de Tempo , Neoplasias Encefálicas/genética , Células Tumorais Cultivadas , Movimento Celular/fisiologia , Apoptose/fisiologia , Glioblastoma/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Galectinas/análise , Galectinas/farmacologia , Galectina 1/análise , Galectina 1/fisiologia , Galectina 3/análise , Galectina 3/fisiologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Citometria de Fluxo/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA