Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Exp Parasitol ; 217: 107962, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32763249

RESUMO

Trypanosoma cruzi is a parasitic protozoan that infects various species of domestic and wild animals, triatomine bugs and humans. It is the etiological agent of American trypanosomiasis, also known as Chagas Disease, which affects about 17 million people in Latin America and is emerging elsewhere in the world. Iron (Fe) is a crucial micronutrient for almost all cells, acting as a cofactor for several metabolic enzymes. T. cruzi has a high requirement for Fe, using heminic and non-heminic Fe for growth and differentiation. Fe occurs in the oxidized (Fe3+) form in aerobic environments and needs to be reduced to Fe2+ before it enters cells. Fe-reductase, located in the plasma membranes of some organisms, catalyzes the Fe3+⇒ Fe2+ conversion. In the present study we found an amino acid sequence in silico that allowed us to identify a novel 35 kDa protein in T. cruzi with two transmembrane domains in the C-terminal region containing His residues that are conserved in the Ferric Reductase Domain Superfamily and are required for catalyzing Fe3+ reduction. Accordingly, we named this protein TcFR. Intact epimastigotes from the T. cruzi DM28c strain reduced the artificial Fe3+-containing substrate potassium ferricyanide in a cell density-dependent manner, following Michaelis-Menten kinetics. The TcFR activity was more than eightfold higher in a plasma membrane-enriched fraction than in whole homogenates, and this increase was consistent with the intensity of the 35 kDa band on Western blotting images obtained using anti-NOX5 raised against the human antigen. Immunofluorescence experiments demonstrated TcFR on the parasite surface. That TcFR is part of a catalytic complex allowing T. cruzi to take up Fe from the medium was confirmed by experiments in which DM28c was assayed after culturing in Fe-depleted medium: (i) proliferation during the stationary growth phase was five times slower; (ii) the relative expression of TcFR (qPCR) was 50% greater; (iii) intact cells had 120% higher Fe-reductase activity. This ensemble of results indicates that TcFR is a conserved enzyme in T. cruzi, and its catalytic properties are modulated in order to respond to external Fe fluctuations.


Assuntos
FMN Redutase/metabolismo , Ferro/metabolismo , Trypanosoma cruzi/enzimologia , Sequência de Aminoácidos , Animais , Western Blotting , Membrana Celular/enzimologia , Doença de Chagas/parasitologia , Colorimetria , FMN Redutase/análise , FMN Redutase/química , Imunofluorescência , Humanos , Filogenia , Distribuição de Poisson , Reação em Cadeia da Polimerase em Tempo Real , Alinhamento de Sequência , Trypanosoma cruzi/classificação , Trypanosoma cruzi/crescimento & desenvolvimento , Trypanosoma cruzi/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA