Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Lancet Neurol ; 23(5): 534-544, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38631769

RESUMO

Progressive multifocal leukoencephalopathy is a rare but devastating demyelinating disease caused by the JC virus (JCV), for which no therapeutics are approved. To make progress towards addressing this unmet medical need, innovations in clinical trial design are needed. Quantitative JCV DNA in CSF has the potential to serve as a valuable biomarker of progressive multifocal leukoencephalopathy disease and treatment response in clinical trials to expedite therapeutic development, as do neuroimaging and other fluid biomarkers such as neurofilament light chain. Specifically, JCV DNA in CSF could be used in clinical trials as an entry criterion, stratification factor, or predictor of clinical outcomes. Insights from the investigation of candidate biomarkers for progressive multifocal leukoencephalopathy might inform approaches to biomarker development for other rare diseases.


Assuntos
Vírus JC , Leucoencefalopatia Multifocal Progressiva , Humanos , Biomarcadores , Variações do Número de Cópias de DNA , DNA Viral/genética , Ensaios Clínicos como Assunto
2.
Front Immunol ; 14: 1235791, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37622115

RESUMO

Background and objectives: Extracellular vesicles and particles (EVPs) are released from virtually all cell types, and may package many inflammatory factors and, in the case of infection, viral components. As such, EVPs can play not only a direct role in the development and progression of disease but can also be used as biomarkers. Here, we characterized immune signatures of EVPs from the cerebrospinal fluid (CSF) of individuals with HTLV-1-associated myelopathy (HAM), other chronic neurologic diseases, and healthy volunteers (HVs) to determine potential indicators of viral involvement and mechanisms of disease. Methods: We analyzed the EVPs from the CSF of HVs, individuals with HAM, HTLV-1-infected asymptomatic carriers (ACs), and from patients with a variety of chronic neurologic diseases of both known viral and non-viral etiologies to investigate the surface repertoires of CSF EVPs during disease. Results: Significant increases in CD8+ and CD2+ EVPs were found in HAM patient CSF samples compared to other clinical groups (p = 0.0002 and p = 0.0003 compared to HVs, respectively, and p = 0.001 and p = 0.0228 compared to MS, respectively), consistent with the immunopathologically-mediated disease associated with CD8+ T-cells in the central nervous system (CNS) of HAM patients. Furthermore, CD8+ (p < 0.0001), CD2+ (p < 0.0001), CD44+ (p = 0.0176), and CD40+ (p = 0.0413) EVP signals were significantly increased in the CSF from individuals with viral infections compared to those without. Discussion: These data suggest that CD8+ and CD2+ CSF EVPs may be important as: 1) potential biomarkers and indicators of disease pathways for viral-mediated neurological diseases, particularly HAM, and 2) as possible meditators of the disease process in infected individuals.


Assuntos
Vesículas Extracelulares , Doenças do Sistema Nervoso , Paraparesia Espástica Tropical , Humanos , Sistema Nervoso Central , Antígenos CD40 , Doença Crônica
3.
Neurology ; 101(16): 700-713, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37487750

RESUMO

JC polyomavirus (JCV) establishes an asymptomatic latent and/or persistent infection in most of the adult population. However, in immunocompromised individuals, JCV can cause a symptomatic infection of the brain, foremost progressive multifocal leukoencephalopathy (PML). In the past 2 decades, there has been increasing concern among patients and the medical community because PML was observed as an adverse event in individuals treated with modern (selective) immune suppressive treatments for various immune-mediated diseases, especially multiple sclerosis. It became evident that this devastating complication also needs to be considered beyond the patient populations historically at risk, including those with hematologic malignancies or HIV-infected individuals. We review the clinical presentation of PML, its variants, pathogenesis, and current diagnostic approaches. We further discuss the need to validate JCV-directed interventions and highlight current management strategies based on early diagnosis and restoring JCV-specific cellular immunity, which is crucial for viral clearance and survival. Finally, we discuss the importance of biomarkers for diagnosis and response to therapy, instrumental in defining sensitive study end points for successful clinical trials of curative or preventive therapeutics. Advances in understanding PML pathophysiology, host and viral genetics, and diagnostics in conjunction with novel immunotherapeutic approaches indicate that the time is right to design and perform definitive trials to develop preventive options and curative therapy for JCV-associated diseases.


Assuntos
Vírus JC , Leucoencefalopatia Multifocal Progressiva , Esclerose Múltipla , Adulto , Humanos , Leucoencefalopatia Multifocal Progressiva/diagnóstico , Leucoencefalopatia Multifocal Progressiva/terapia , Encéfalo , Biomarcadores
4.
JAMA Neurol ; 80(6): 624-633, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37093609

RESUMO

Importance: Progressive multifocal leukoencephalopathy can occur in the context of systemic sarcoidosis (S-PML) in the absence of therapeutic immune suppression and can initially be mistaken for neurosarcoidosis or other complications of sarcoidosis. Earlier recognition of S-PML could lead to more effective treatment of the disease. Objective: To describe characteristics of patients with S-PML. Design, Setting, and Participants: For this case series, records from 8 academic medical centers in the United States were reviewed from 2004 to 2022. A systematic review of literature from 1955 to 2022 yielded data for additional patients. Included were patients with S-PML who were not receiving therapeutic immune suppression. The median follow-up time for patients who survived the acute range of illness was 19 months (range, 2-99). Data were analyzed in February 2023. Exposures: Sarcoidosis without active therapeutic immune suppression. Main Outcomes and Measures: Clinical, laboratory, and radiographic features of patients with S-PML. Results: Twenty-one patients with S-PML not receiving therapeutic immune suppression were included in this study, and data for 37 patients were collected from literature review. The median age of the 21 study patients was 56 years (range, 33-72), 4 patients (19%) were female, and 17 (81%) were male. The median age of the literature review patients was 49 years (range, 21-74); 12 of 34 patients (33%) with reported sex were female, and 22 (67%) were male. Nine of 21 study patients (43%) and 18 of 31 literature review patients (58%) had simultaneous presentation of systemic sarcoidosis and PML. Six of 14 study patients (43%) and 11 of 19 literature review patients (58%) had a CD4+ T-cell count greater than 200/µL. In 2 study patients, a systemic flare of sarcoidosis closely preceded S-PML development. Ten of 17 study patients (59%) and 21 of 35 literature review patients (60%) died during the acute phase of illness. No meaningful predictive differences were found between patients who survived S-PML and those who did not. Conclusions and Relevance: In this case series, patients with sarcoidosis developed PML in the absence of therapeutic immune suppression, and peripheral blood proxies of immune function were often only mildly abnormal. Systemic sarcoidosis flares may rarely herald the onset of S-PML. Clinicians should consider PML in any patient with sarcoidosis and new white matter lesions on brain magnetic resonance imaging.


Assuntos
Leucoencefalopatia Multifocal Progressiva , Sarcoidose , Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Idoso , Adulto Jovem , Encéfalo/patologia , Sarcoidose/complicações , Imageamento por Ressonância Magnética , Resultado do Tratamento
5.
Ann Neurol ; 93(2): 257-270, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36151879

RESUMO

OBJECTIVE: Our aim was to assess the real-world effectiveness of immune checkpoint inhibitors for treatment of patients with progressive multifocal leukoencephalopathy (PML). METHODS: We conducted a multicenter survey compiling retrospective data from 79 PML patients, including 38 published cases and 41 unpublished cases, who received immune checkpoint inhibitors as add-on to standard of care. One-year follow-up data were analyzed to determine clinical outcomes and safety profile. Logistic regression was used to identify variables associated with 1-year survival. RESULTS: Predisposing conditions included hematological malignancy (n = 38, 48.1%), primary immunodeficiency (n = 14, 17.7%), human immunodeficiency virus/acquired immunodeficiency syndrome (n = 12, 15.2%), inflammatory disease (n = 8, 10.1%), neoplasm (n = 5, 6.3%), and transplantation (n = 2, 2.5%). Pembrolizumab was most commonly used (n = 53, 67.1%). One-year survival was 51.9% (41/79). PML-immune reconstitution inflammatory syndrome (IRIS) was reported in 15 of 79 patients (19%). Pretreatment expression of programmed cell death-1 on circulating T cells did not differ between survivors and nonsurvivors. Development of contrast enhancement on follow-up magnetic resonance imaging at least once during follow-up (OR = 3.16, 95% confidence interval = 1.20-8.72, p = 0.02) was associated with 1-year survival. Cerebrospinal fluid JC polyomavirus DNA load decreased significantly by 1-month follow-up in survivors compared to nonsurvivors (p < 0.0001). Thirty-two adverse events occurred among 24 of 79 patients (30.4%), and led to treatment discontinuation in 7 of 24 patients (29.1%). INTERPRETATION: In this noncontrolled retrospective study of patients with PML who were treated with immune checkpoint inhibitors, mortality remains high. Development of inflammatory features or overt PML-IRIS was commonly observed. This study highlights that use of immune checkpoint inhibitors should be strictly personalized toward characteristics of the individual PML patient. ANN NEUROL 2023;93:257-270.


Assuntos
Síndrome Inflamatória da Reconstituição Imune , Vírus JC , Leucoencefalopatia Multifocal Progressiva , Humanos , Leucoencefalopatia Multifocal Progressiva/tratamento farmacológico , Inibidores de Checkpoint Imunológico/efeitos adversos , Estudos Retrospectivos , Síndrome Inflamatória da Reconstituição Imune/tratamento farmacológico
6.
Curr HIV/AIDS Rep ; 19(6): 580-591, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36181625

RESUMO

PURPOSE OF REVIEW: Progressive multifocal leukoencephalopathy (PML) is a severe opportunistic infection that remains an important cause of morbidity and mortality in people living with HIV (PLWH). Immune checkpoint molecules are negative regulators of the immune response that have been targeted as a strategy to bolster anti-viral immunity in PML, with varied outcomes reported. While initiation and optimization of antiretroviral therapy remains the standard of care in HIV-related PML, the specific opportunities and risks for checkpoint blockade in these cases should be explored. RECENT FINDINGS: As of April 15, 2022, only 5 of the 53 total published cases of PML treated with checkpoint blockade had underlying HIV infection; four of these had a favorable outcome. The risk of promoting immune reconstitution inflammatory syndrome is a major concern and underscores the importance of patient selection and monitoring. Checkpoint blockade warrants further exploration as a potentially promising option for treatment escalation in HIV-related PML.


Assuntos
Infecções por HIV , Síndrome Inflamatória da Reconstituição Imune , Vírus JC , Leucoencefalopatia Multifocal Progressiva , Humanos , Leucoencefalopatia Multifocal Progressiva/tratamento farmacológico , Leucoencefalopatia Multifocal Progressiva/etiologia , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Síndrome Inflamatória da Reconstituição Imune/tratamento farmacológico , Síndrome Inflamatória da Reconstituição Imune/complicações , Antivirais/uso terapêutico
7.
Viruses ; 14(6)2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35746716

RESUMO

Background: Lytic infection of oligodendrocytes by the human JC polyomavirus (JCPyV) results in the demyelinating disease called progressive multifocal leukoencephalopathy (PML). The detection of viral DNA in the cerebrospinal fluid (CSF) by PCR is an important diagnostic tool and, in conjunction with defined radiological and clinical features, can provide diagnosis of definite PML, avoiding the need for brain biopsy. The main aim of this study is to compare the droplet digital PCR (ddPCR) assay with the gold standard quantitative PCR (qPCR) for the quantification of JC viral loads in clinical samples. Methods: A total of 62 CSF samples from 31 patients with PML were analyzed to compare the qPCR gold standard technique with ddPCR to detect conserved viral DNA sequences in the JCPyV genome. As part of the validation process, ddPCR results were compared to qPCR data obtained in 42 different laboratories around the world. In addition, the characterization of a novel triplex ddPCR to detect viral DNA sequence from both prototype and archetype variants and a cellular housekeeping reference gene is described. Triplex ddPCR was used to analyze the serum from six PML patients and from three additional cohorts, including 20 healthy controls (HC), 20 patients with multiple sclerosis (MS) who had never been treated with natalizumab (no-NTZ-treated), and 14 patients with MS who were being treated with natalizumab (NTZ-treated); three from this last group seroconverted during the course of treatment with natalizumab. Results: JCPyV DNA was detected only by ddPCR for 5 of the 62 CSF samples (8%), while remaining undetected by qPCR. For nine CSF samples (15%), JCPyV DNA was at the lower limit of quantification for qPCR, set at <250 copies/mL, and therefore no relative quantitation could be determined. By contrast, exact copies of JCPyV for each of these samples were quantified by ddPCR. No differences were observed between qPCR and ddPCR when five standardized plasma samples were analyzed for JCPyV in 42 laboratories in the United States and Europe. JCPyV-DNA was undetected in all the sera from HC and MS cohorts tested by triplex ddPCR, while serum samples from six patients with PML tested positive for JCPyV. Conclusion: This study shows strong correlation between ddPCR and qPCR with increased sensitivity of the ddPCR assay. Further work will be needed to determine whether multiplex ddPCR can be useful to determine PML risk in natalizumab-treated MS patients.


Assuntos
Vírus JC , Leucoencefalopatia Multifocal Progressiva , Esclerose Múltipla , DNA Viral/genética , Humanos , Vírus JC/genética , Leucoencefalopatia Multifocal Progressiva/diagnóstico , Leucoencefalopatia Multifocal Progressiva/tratamento farmacológico , Esclerose Múltipla/tratamento farmacológico , Natalizumab/uso terapêutico , Reação em Cadeia da Polimerase em Tempo Real , Carga Viral
8.
Front Neurol ; 13: 1016377, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36588876

RESUMO

Background: Progressive multifocal leukoencephalopathy (PML) is a rare and often lethal brain disorder caused by the common, typically benign polyomavirus 2, also known as JC virus (JCV). In a small percentage of immunosuppressed individuals, JCV is reactivated and infects the brain, causing devastating neurological defects. A wide range of immunosuppressed groups can develop PML, such as patients with: HIV/AIDS, hematological malignancies (e.g., leukemias, lymphomas, and multiple myeloma), autoimmune disorders (e.g., psoriasis, rheumatoid arthritis, and systemic lupus erythematosus), and organ transplants. In some patients, iatrogenic (i.e., drug-induced) PML occurs as a serious adverse event from exposure to immunosuppressant therapies used to treat their disease (e.g., hematological malignancies and multiple sclerosis). While JCV infection and immunosuppression are necessary, they are not sufficient to cause PML. Methods: We hypothesized that patients may also have a genetic susceptibility from the presence of rare deleterious genetic variants in immune-relevant genes (e.g., those that cause inborn errors of immunity). In our prior genetic study of 184 PML cases, we discovered 19 candidate PML risk variants. In the current study of another 152 cases, we validated 4 of 19 variants in both population controls (gnomAD 3.1) and matched controls (JCV+ multiple sclerosis patients on a PML-linked drug ≥ 2 years). Results: The four variants, found in immune system genes with strong biological links, are: C8B, 1-57409459-C-A, rs139498867; LY9 (alias SLAMF3), 1-160769595-AG-A, rs763811636; FCN2, 9-137779251-G-A, rs76267164; STXBP2, 19-7712287-G-C, rs35490401. Carriers of any one of these variants are shown to be at high risk of PML when drug-exposed PML cases are compared to drug-exposed matched controls: P value = 3.50E-06, OR = 8.7 [3.7-20.6]. Measures of clinical validity and utility compare favorably to other genetic risk tests, such as BRCA1 and BRCA2 screening for breast cancer risk and HLA-B*15:02 pharmacogenetic screening for pharmacovigilance of carbamazepine to prevent Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis. Conclusion: For the first time, a PML genetic risk test can be implemented for screening patients taking or considering treatment with a PML-linked drug in order to decrease the incidence of PML and enable safer use of highly effective therapies used to treat their underlying disease.

9.
Brain ; 145(2): 426-440, 2022 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-34791056

RESUMO

Progressive multifocal leukoencephalopathy (PML) is an opportunistic infection of the CNS caused by the JC virus, which infects white and grey matter cells and leads to irreversible demyelination and neuroaxonal damage. Brain MRI, in addition to the clinical presentation and demonstration of JC virus DNA either in the CSF or by histopathology, is an important tool in the detection of PML. In clinical practice, standard MRI pulse sequences are utilized for screening, diagnosis and monitoring of PML, but validated imaging-based outcome measures for use in prospective, interventional clinical trials for PML have yet to be established. We review the existing literature regarding the use of MRI and PET in PML and discuss the implications of PML histopathology for neuroradiology. MRI not only demonstrates the localization and extent of PML lesions, but also mirrors the tissue destruction, ongoing viral spread, and resulting inflammation. Finally, we explore the potential for imaging measures to serve as an outcome in PML clinical trials and provide recommendations for current and future imaging outcome measure development in this area.


Assuntos
Vírus JC , Leucoencefalopatia Multifocal Progressiva , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Humanos , Vírus JC/genética , Leucoencefalopatia Multifocal Progressiva/diagnóstico por imagem , Leucoencefalopatia Multifocal Progressiva/tratamento farmacológico , Imageamento por Ressonância Magnética , Estudos Prospectivos
10.
Ann Clin Transl Neurol ; 8(10): 1970-1985, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34562313

RESUMO

OBJECTIVE: Human T-cell lymphotropic virus 1 (HTLV-1)-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is a chronic, progressive myelopathy. A high proviral load (PVL) is one of the main risk factors for HAM/TSP. Recently, it was shown that raltegravir could inhibit cell-free and cell-to-cell transmission of HTLV-1 in vitro. Given the substantial clinical experience in human immunodeficiency virus infection and its excellent safety profile, this agent may be an attractive therapeutic option for HAM/TSP patients. METHODS: Sixteen subjects with HAM/TSP received raltegravir 400 mg orally twice daily in an initial 6-month treatment phase, followed by a 9-month post-treatment phase. HTLV-1 PVLs were assessed using droplet digital PCR from the PBMCs every 3 months, and from the CSF at baseline, month 6, and month 15. We also evaluated the ability of raltegravir to regulate abnormal immune responses in HAM/TSP patients. RESULTS: While a downward trend was observed in PBMC and/or CSF PVLs of some patients, raltegravir overall did not have any impact on the PVL in this HAM/TSP patient cohort. Clinically, all patients' neurological scores and objective measurements remained relatively stable, with some expected variability. Immunologic studies showed alterations in the immune profiles of a subset of patients including decreased CD4+ CD25+ T cells and spontaneous lymphoproliferation. INTERPRETATION: Raltegravir was generally well tolerated in this HAM/TSP patient cohort. A subset of patients exhibited a mild decrease in PVL as well as variations in their immune profiles after taking raltegravir. These findings suggest that raltegravir may be a therapeutic option in select HAM/TSP patients. CLINICAL TRIAL REGISTRATION NUMBER: NCT01867320.


Assuntos
Inibidores de Integrase/farmacologia , Paraparesia Espástica Tropical/tratamento farmacológico , Raltegravir Potássico/farmacologia , Adulto , Idoso , Feminino , Humanos , Inibidores de Integrase/administração & dosagem , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Raltegravir Potássico/administração & dosagem , Resultado do Tratamento
11.
Lancet Neurol ; 20(8): 639-652, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34302788

RESUMO

BACKGROUND: Progressive multifocal leukoencephalopathy, a rare disease of the CNS caused by JC virus and occurring in immunosuppressed people, is typically fatal unless adaptive immunity is restored. JC virus is a member of the human polyomavirus family and is closely related to the BK virus. We hypothesised that use of partly HLA-matched donor-derived BK virus-specific T cells for immunotherapy in progressive multifocal leukoencephalopathy would be feasible and safe. METHODS: We did an open-label, single-cohort pilot study in patients (aged 18 years or older) with clinically definite progressive multifocal leukoencephalopathy and disease progression in the previous month at the National Institutes of Health (NIH) Clinical Center (Bethesda, MD, USA). Overlapping peptide libraries derived from large T antigen and major capsid protein VP1 of BK virus with high sequence homology to JC virus counterparts were used to generate polyomavirus-specific T cells cross-recognising JC virus antigens. Polyomavirus-specific T cells were manufactured from peripheral blood mononuclear cells of first-degree relative donors aged 18 years or older. These cells were administered to patients by intravenous infusion at 1 × 106 polyomavirus-specific T cells per kg, followed by up to two additional infusions at 2 × 106 polyomavirus-specific T cells per kg. The primary endpoints were feasibility (no manufacturing failure based on meeting release criteria, achieving adequate numbers of cell product for clinical use, and showing measurable antiviral activity) and safety in all patients. The safety monitoring period was 28 days after each infusion. Patients were followed up with serial MRI for up to 12 months after the final infusion. This trial is registered at ClinicalTrials.gov, NCT02694783. FINDINGS: Between April 7, 2016, and Oct 19, 2018, 26 patients were screened, of whom 12 were confirmed eligible and received treatment derived from 14 matched donors. All administered polyomavirus-specific T cells met the release criteria and recognised cognate antigens in vitro. 12 patients received at least one infusion, ten received at least two, and seven received a total of three infusions. The median on-study follow-up was 109·5 days (range 23-699). All infusions were tolerated well, and no serious treatment-related adverse events were observed. Seven patients survived progressive multifocal leukoencephalopathy for longer than 1 year after the first infusion, whereas five died of progressive multifocal leukoencephalopathy within 3 months. INTERPRETATION: We showed that generation of polyomavirus-specific T cells from healthy related donors is feasible, and these cells can be safely used as an infusion for adoptive immunotherapy of progressive multifocal leukoencephalopathy. Although not powered to assess efficacy, our data provide additional support for this strategy as a potential life-saving therapy for some patients. FUNDING: Intramural Research Program of the National Institute of Neurological Disorders and Stroke of the NIH.


Assuntos
Vírus BK/imunologia , Imunoterapia/métodos , Leucoencefalopatia Multifocal Progressiva/terapia , Linfócitos T/imunologia , Adulto , Idoso , Doadores de Sangue , Estudos de Coortes , Determinação de Ponto Final , Estudos de Viabilidade , Feminino , Humanos , Imunoterapia/efeitos adversos , Vírus JC/imunologia , Leucoencefalopatia Multifocal Progressiva/diagnóstico por imagem , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Monócitos/imunologia , Projetos Piloto , Análise de Sobrevida , Resultado do Tratamento , Adulto Jovem
12.
Nat Rev Neurol ; 17(1): 37-51, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33219338

RESUMO

Progressive multifocal leukoencephalopathy (PML) is a devastating CNS infection caused by JC virus (JCV), a polyomavirus that commonly establishes persistent, asymptomatic infection in the general population. Emerging evidence that PML can be ameliorated with novel immunotherapeutic approaches calls for reassessment of PML pathophysiology and clinical course. PML results from JCV reactivation in the setting of impaired cellular immunity, and no antiviral therapies are available, so survival depends on reversal of the underlying immunosuppression. Antiretroviral therapies greatly reduce the risk of HIV-related PML, but many modern treatments for cancers, organ transplantation and chronic inflammatory disease cause immunosuppression that can be difficult to reverse. These treatments - most notably natalizumab for multiple sclerosis - have led to a surge of iatrogenic PML. The spectrum of presentations of JCV-related disease has evolved over time and may challenge current diagnostic criteria. Immunotherapeutic interventions, such as use of checkpoint inhibitors and adoptive T cell transfer, have shown promise but caution is needed in the management of immune reconstitution inflammatory syndrome, an exuberant immune response that can contribute to morbidity and death. Many people who survive PML are left with neurological sequelae and some with persistent, low-level viral replication in the CNS. As the number of people who survive PML increases, this lack of viral clearance could create challenges in the subsequent management of some underlying diseases.


Assuntos
Transferência Adotiva/métodos , Vírus JC , Leucoencefalopatia Multifocal Progressiva/virologia , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Leucoencefalopatia Multifocal Progressiva/tratamento farmacológico , Linfócitos T
13.
Curr Opin Virol ; 40: 19-27, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32279025

RESUMO

Progressive multifocal leukoencephalopathy (PML) is a frequently fatal brain infection caused by the JC polyomavirus (JCV). PML occurs in people with impaired cellular immunity, and the only effective treatment is restoration of immune function. Infection in immunocompromised hosts is often associated with immune exhaustion, which is mediated by inhibitory cell surface receptors known as immune checkpoints, leading to loss of T cell effector function. Blockade of immune checkpoints can reinvigorate host responses to fight infection. Recently, there have been several reports of checkpoint blockade to treat PML in patients in whom immune reconstitution is otherwise not possible, with some evidence for positive response. Larger studies are needed to better understand efficacy of checkpoint blockade in PML and factors that determine response.


Assuntos
Antivirais/administração & dosagem , Inibidores de Checkpoint Imunológico/administração & dosagem , Proteínas de Checkpoint Imunológico/imunologia , Vírus JC/efeitos dos fármacos , Leucoencefalopatia Multifocal Progressiva/tratamento farmacológico , Animais , Humanos , Proteínas de Checkpoint Imunológico/genética , Vírus JC/genética , Vírus JC/imunologia , Leucoencefalopatia Multifocal Progressiva/genética , Leucoencefalopatia Multifocal Progressiva/imunologia , Leucoencefalopatia Multifocal Progressiva/virologia , Linfócitos T/imunologia
14.
Neuroimage Clin ; 28: 102499, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33395989

RESUMO

Progressive multifocal leukoencephalopathy (PML) is a rare opportunistic brain infection caused by the JC virus and associated with substantial morbidity and mortality. Accurate MRI assessment of PML lesion burden and brain parenchymal atrophy is of decisive value in monitoring the disease course and response to therapy. However, there are currently no validated automatic methods for quantification of PML lesion burden or associated parenchymal volume loss. Furthermore, manual brain or lesion delineations can be tedious, require the use of valuable time resources by radiologists or trained experts, and are often subjective. In this work, we introduce JCnet (named after the causative viral agent), an end-to-end, fully automated method for brain parenchymal and lesion segmentation in PML using consecutive 3D patch-based convolutional neural networks. The network architecture consists of multi-view feature pyramid networks with hierarchical residual learning blocks containing embedded batch normalization and nonlinear activation functions. The feature maps across the bottom-up and top-down pathways of the feature pyramids are merged, and an output probability membership generated through convolutional pathways, thus rendering the method fully convolutional. Our results show that this approach outperforms and improves longitudinal consistency compared to conventional, state-of-the-art methods of healthy brain and multiple sclerosis lesion segmentation, utilized here as comparators given the lack of available methods validated for use in PML. The ability to produce robust and accurate automated measures of brain atrophy and lesion segmentation in PML is not only valuable clinically but holds promise toward including standardized quantitative MRI measures in clinical trials of targeted therapies. Code is available at: https://github.com/omarallouz/JCnet.


Assuntos
Aprendizado Profundo , Leucoencefalopatia Multifocal Progressiva , Encéfalo/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador , Leucoencefalopatia Multifocal Progressiva/diagnóstico por imagem , Imageamento por Ressonância Magnética , Redes Neurais de Computação
15.
Ann Clin Transl Neurol ; 6(8): 1383-1394, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31402625

RESUMO

OBJECTIVE: Human T cell lymphotropic virus 1 (HTLV-1)-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is a chronic, progressive, neurological disease. Chronic activation of CD8+ T cells, as evidenced by increased spontaneous lymphoproliferation and HTLV-1-specific cytotoxic T cells, has been demonstrated in HAM/TSP patients. Since IL-2 and IL-15 stimulate memory CD8+ T cell activity, these cytokines have been implicated in the immunopathogenesis of HAM/TSP. In this phase I trial, we evaluated the safety, pharmacokinetics, and ability of Hu-Mikß1, a humanized monoclonal antibody directed toward the IL-2/IL-15 receptor ß-chain (IL-2/IL-15Rß: CD122), to saturate CD122 and regulate abnormal immune responses in patients with HAM/TSP by inhibition of IL-15 action. METHODS: Hu-Mikß1 was administered intravenously at doses of 0.5 mg/kg, 1.0 mg/kg, or 1.5 mg/kg in a total of nine HAM/TSP patients. Five doses of Hu-Mikß1 were administered at 3-week intervals. The clinical response was evaluated using standardized scales. Viral and immunologic outcome measures were examined including HTLV-1 proviral load, T cell phenotypic analysis and spontaneous lymphoproliferation in HAM/TSP patients. RESULTS: There was no significant toxicity associated with Hu-Mikß1 administration in HAM/TSP patients. Saturation of CD122 by Hu-Mikß1 was achieved in five out of nine HAM/TSP patients. Administration of Hu-Mikß1 was associated with inhibition of aberrant CD8+ T cell function including spontaneous lymphoproliferation and degranulation and IFN-γ expression, especially in HAM/TSP patients that achieved CD122 saturation. INTERPRETATION: The treatment with Hu-Mikß1 had a number of immunological effects on HAM/TSP patients although no clinical efficacy was observed. We also did not see any dose-related toxicity.


Assuntos
Anticorpos Monoclonais/farmacologia , Subunidade beta de Receptor de Interleucina-2/antagonistas & inibidores , Paraparesia Espástica Tropical/imunologia , Paraparesia Espástica Tropical/terapia , Administração Intravenosa , Adulto , Idoso , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/efeitos adversos , Linfócitos T CD8-Positivos/efeitos dos fármacos , Citocinas/biossíntese , Feminino , Infecções por HTLV-I/imunologia , Vírus Linfotrópico T Tipo 1 Humano/imunologia , Humanos , Interferon gama/metabolismo , Interleucina-15 , Interleucina-2 , Subunidade beta de Receptor de Interleucina-2/metabolismo , Ativação Linfocitária , Masculino , Pessoa de Meia-Idade , Doenças do Sistema Nervoso , Linfócitos T Citotóxicos/imunologia
16.
N Engl J Med ; 380(17): 1597-1605, 2019 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-30969503

RESUMO

BACKGROUND: Progressive multifocal leukoencephalopathy (PML) is an opportunistic brain infection that is caused by the JC virus and is typically fatal unless immune function can be restored. Programmed cell death protein 1 (PD-1) is a negative regulator of the immune response that may contribute to impaired viral clearance. Whether PD-1 blockade with pembrolizumab could reinvigorate anti-JC virus immune activity in patients with PML was unknown. METHODS: We administered pembrolizumab at a dose of 2 mg per kilogram of body weight every 4 to 6 weeks to eight adults with PML, each with a different underlying predisposing condition. Each patient received at least one dose but no more than three doses. RESULTS: Pembrolizumab induced down-regulation of PD-1 expression on lymphocytes in peripheral blood and in cerebrospinal fluid (CSF) in all eight patients. Five patients had clinical improvement or stabilization of PML accompanied by a reduction in the JC viral load in the CSF and an increase in in vitro CD4+ and CD8+ anti-JC virus activity. In the other three patients, no meaningful change was observed in the viral load or in the magnitude of antiviral cellular immune response, and there was no clinical improvement. CONCLUSIONS: Our findings are consistent with the hypothesis that in some patients with PML, pembrolizumab reduces JC viral load and increases CD4+ and CD8+ activity against the JC virus; clinical improvement or stabilization occurred in five of the eight patients who received pembrolizumab. Further study of immune checkpoint inhibitors in the treatment of PML is warranted. (Funded by the National Institutes of Health.).


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Fatores Imunológicos/uso terapêutico , Vírus JC/isolamento & purificação , Leucoencefalopatia Multifocal Progressiva/tratamento farmacológico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Adulto , Idoso , Encéfalo/diagnóstico por imagem , Linfócitos T CD4-Positivos/fisiologia , Linfócitos T CD8-Positivos/fisiologia , Líquido Cefalorraquidiano/virologia , Regulação para Baixo , Feminino , Humanos , Síndrome Inflamatória da Reconstituição Imune/etiologia , Leucoencefalopatia Multifocal Progressiva/diagnóstico por imagem , Leucoencefalopatia Multifocal Progressiva/imunologia , Contagem de Linfócitos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Receptor de Morte Celular Programada 1/metabolismo , Carga Viral , Substância Branca/diagnóstico por imagem , Substância Branca/patologia
17.
PLoS Pathog ; 14(4): e1007042, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29709026

RESUMO

Intrathecal antibody synthesis is a well-documented phenomenon in infectious neurological diseases as well as in demyelinating diseases, but little is known about the role of B cells in the central nervous systems. We examined B cell and T cell immunophenotypes in CSF of patients with HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) compared to healthy normal donors and subjects with the other chronic virus infection and/or neuroinflammatory diseases including HIV infection, multiple sclerosis (MS) and progressive multifocal leukoencephalopathy. Antibody secreting B cells (ASCs) were elevated in HAM/TSP patients, which was significantly correlated with intrathecal HTLV-1-specific antibody responses. High frequency of ASCs was also detected in patients with relapsing-remitting multiple sclerosis (RRMS). While RRMS patients showed significant correlations between ASCs and memory follicular helper CD4+ T cells, CD4+CD25+ T cells were elevated in HAM/TSP patients, which were significantly correlated with ASCs and HTLV-1 proviral load. These results highlight the importance of the B cell compartment and the associated inflammatory milieu in HAM/TSP patients where virus-specific antibody production may be required to control viral persistence and/or may be associated with disease development.


Assuntos
Células Produtoras de Anticorpos/imunologia , Linfócitos B/imunologia , Vírus Linfotrópico T Tipo 1 Humano/imunologia , Esclerose Múltipla/imunologia , Paraparesia Espástica Tropical/imunologia , Linfócitos B/metabolismo , Linfócitos B/patologia , Linfócitos B/virologia , Estudos de Casos e Controles , Feminino , Humanos , Imunofenotipagem , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/líquido cefalorraquidiano , Esclerose Múltipla/virologia , Paraparesia Espástica Tropical/líquido cefalorraquidiano , Paraparesia Espástica Tropical/virologia , Carga Viral
18.
Ann Neurol ; 82(5): 719-728, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29024167

RESUMO

OBJECTIVE: Previous work measures spinal cord thinning in chronic progressive myelopathies, including human T-lymphotropic virus 1 (HTLV-1)-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and multiple sclerosis (MS). Quantitative measurements of spinal cord atrophy are important in fully characterizing these and other spinal cord diseases. We aimed to investigate patterns of spinal cord atrophy and correlations with clinical markers. METHODS: Spinal cord cross-sectional area was measured in individuals (24 healthy controls [HCs], 17 asymptomatic carriers of HTLV-1 (AC), 47 HAM/TSP, 74 relapsing-remitting MS [RRMS], 17 secondary progressive MS [SPMS], and 40 primary progressive MS [PPMS]) from C1 to T10. Clinical disability scores, viral markers, and immunological parameters were obtained for patients and correlated with representative spinal cord cross-sectional area regions at the C2 to C3, C4 to C5, and T4 to T9 levels. In 2 HAM/TSP patients, spinal cord cross-sectional area was measured over 3 years. RESULTS: All spinal cord regions are thinner in HAM/TSP (56 mm2 [standard deviation, 10], 59 [10], 23 [5]) than in HC (76 [7], 83 [8], 38 [4]) and AC (71 [7], 78 [9], 36 [7]). SPMS (62 [9], 66 [9], 32 [6]) and PPMS (65 [11], 68 [10], 35 [7]) have thinner cervical cords than HC and RRMS (73 [9], 77 [10], 37 [6]). Clinical disability scores (Expanded Disability Status Scale [p = 0.009] and Instituto de Pesquisas de Cananeia [p = 0.03]) and CD8+ T-cell frequency (p = 0.04) correlate with T4 to T9 spinal cord cross-sectional area in HAM/TSP. Higher cerebrospinal fluid HTLV-1 proviral load (p = 0.01) was associated with thinner spinal cord cross-sectional area. Both HAM/TSP patients followed longitudinally showed thoracic thinning followed by cervical thinning. INTERPRETATION: Group average spinal cord cross-sectional area in HAM/TSP and progressive MS show spinal cord atrophy. We further hypothesize in HAM/TSP that is possible that neuroglial loss from a thoracic inflammatory process results in anterograde and retrograde degeneration of axons, leading to the temporal progression of thoracic to cervical atrophy described here. Ann Neurol 2017;82:719-728.


Assuntos
Atrofia/patologia , Líquido Cefalorraquidiano/virologia , Esclerose Múltipla Crônica Progressiva/diagnóstico por imagem , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Paraparesia Espástica Tropical/diagnóstico por imagem , Medula Espinal/diagnóstico por imagem , Medula Espinal/patologia , Adulto , Estudos de Casos e Controles , Líquido Cefalorraquidiano/citologia , Avaliação da Deficiência , Feminino , Vírus Linfotrópico T Tipo 1 Humano/metabolismo , Humanos , Linfócitos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla Crônica Progressiva/sangue , Esclerose Múltipla Crônica Progressiva/líquido cefalorraquidiano , Esclerose Múltipla Recidivante-Remitente/sangue , Esclerose Múltipla Recidivante-Remitente/líquido cefalorraquidiano , Paraparesia Espástica Tropical/sangue , Paraparesia Espástica Tropical/líquido cefalorraquidiano , Adulto Jovem
19.
J Neurovirol ; 20(4): 341-51, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24781526

RESUMO

An elevated human T cell lymphotropic virus 1 (HTLV)-1 proviral load (PVL) is the main risk factor for developing HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) in HTLV-1 infected subjects, and a high cerebrospinal fluid (CSF) to peripheral blood mononuclear cell (PBMC) PVL ratio may be diagnostic of the condition. However, the standard method for quantification of HTLV-1 PVL-real-time PCR-has multiple limitations, including increased inter-assay variability in compartments with low cell numbers, such as CSF. Therefore, in this study, we evaluated a novel technique for HTVL-1 PVL quantification, digital droplet PCR (ddPCR). In ddPCR, PCR samples are partitioned into thousands of nanoliter-sized droplets, amplified on a thermocycler, and queried for fluorescent signal. Due to the high number of independent events (droplets), Poisson algorithms are used to determine absolute copy numbers independently of a standard curve, which enables highly precise quantitation. This assay has low intra-assay variability allowing for reliable PVL measurement in PBMC and CSF compartments of both asymptomatic carriers (AC) and HAM/TSP patients. It is also useful for HTLV-1-related clinical applications, such as longitudinal monitoring of PVL and identification of viral mutations within the region targeted by the primers and probe.


Assuntos
DNA Viral/análise , Infecções por HTLV-I/sangue , Infecções por HTLV-I/líquido cefalorraquidiano , Vírus Linfotrópico T Tipo 1 Humano/genética , Mutação , Reação em Cadeia da Polimerase/métodos , Adulto , Idoso , Feminino , Infecções por HTLV-I/virologia , Humanos , Masculino , Pessoa de Meia-Idade , Paraparesia Espástica Tropical/sangue , Paraparesia Espástica Tropical/líquido cefalorraquidiano , Paraparesia Espástica Tropical/virologia , Reprodutibilidade dos Testes , Carga Viral
20.
Neurology ; 82(11): 984-8, 2014 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-24532277

RESUMO

OBJECTIVE: To report 3 patients with multiple sclerosis (MS) who presented with daclizumab-related adverse events (AEs) in multiple organ systems. METHODS: A retrospective chart review was performed of patients with MS who had clinical and histopathologic findings suggestive of daclizumab-induced AEs between 2004 and 2010 at the Johns Hopkins MS Clinic. This study met criteria for exemption from review from the institutional review board. RESULTS: Of 20 total patients with MS who had been treated with daclizumab, 3 patients with clinical and histopathologic findings suggestive of daclizumab-induced AEs were identified. All patients were treated with Zenapax (1 mg/kg monthly IV infusions) outside of a clinical trial setting. Clinical manifestations after a mean treatment duration of 20 months consisted of diffuse rash and alopecia, diffuse lymphadenopathy, and breast nodules. Tissue histopathology demonstrated lymphocytic infiltrates with CD56-expressing cells in 2 patients (lymph node, breast nodule). On daclizumab discontinuation, the rash/alopecia and diffuse lymphadenopathy resolved, while the breast nodules stabilized. CONCLUSIONS: Daclizumab-induced AEs can occur in various organ systems after a relatively prolonged duration of exposure and require clinician awareness. Future studies are needed to better understand the relationship between natural killer cells and daclizumab-related AEs.


Assuntos
Complexo Relacionado com a AIDS/induzido quimicamente , Anticorpos Monoclonais Humanizados/efeitos adversos , Imunoglobulina G/efeitos adversos , Imunossupressores/efeitos adversos , Adulto , Antígenos CD/metabolismo , Mama/efeitos dos fármacos , Mama/patologia , Daclizumabe , Feminino , Humanos , Infiltração Leucêmica/induzido quimicamente , Linfonodos/efeitos dos fármacos , Linfonodos/patologia , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/tratamento farmacológico , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA