Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Microsc Res Tech ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38988205

RESUMO

Three-dimensional (3D) spheroid models aim to bridge the gap between traditional two-dimensional (2D) cultures and the complex in vivo tissue environment. These models, created by self-clustering cells to mimic a 3D environment with surrounding extracellular framework, provide a valuable research tool. The NSC-34 cell line, generated by fusing mouse spinal cord motor neurons and neuroblastoma cells, is essential for studying neurodegenerative diseases like amyotrophic lateral sclerosis (ALS), where abnormal protein accumulation, such as TAR-DNA-binding protein 43 (TDP-43), occurs in affected nerve cells. However, NSC-34 behavior in a 3D context remains underexplored, and this study represents the first attempt to create a 3D model to determine its suitability for studying pathology. We generated NSC-34 spheroids using a nonadhesive hydrogel-based template and characterized them for 6 days. Light microscopy revealed that NSC-34 cells in 3D maintained high viability, a distinct round shape, and forming stable membrane connections. Scanning electron microscopy identified multiple tunnel-like structures, while ultrastructural analysis highlighted nuclear bending and mitochondria alterations. Using inducible GFP-TDP-43-expressing NSC-34 spheroids, we explored whether 3D structure affected TDP-43 expression, localization, and aggregation. Spheroids displayed nuclear GFP-TDP-43 expression, albeit at a reduced level compared with 2D cultures and generated both TDP-35 fragments and TDP-43 aggregates. This study sheds light on the distinctive behavior of NSC-34 in 3D culture, suggesting caution in the use of the 3D model for ALS or TDP-43 pathologies. Yet, it underscores the spheroids' potential for investigating fundamental cellular mechanisms, cell adaptation in a 3D context, future bioreactor applications, and drug penetration studies. RESEARCH HIGHLIGHTS: 3D spheroid generation: NSC-34 spheroids, developed using a hydrogel-based template, showed high viability and distinct shapes for 6 days. Structural features: advanced microscopy identified tunnel-like structures and nuclear and mitochondrial changes in the spheroids. Protein dynamics: the study observed how 3D structures impact TDP-43 behavior, with altered expression but similar aggregation patterns to 2D cultures. Research implications: this study reveals the unique behavior of NSC-34 in 3D culture, suggests a careful approach to use this model for ALS or TDP-43 pathologies, and highlights its potential in cellular mechanism research and drug testing applications.

2.
Front Bioeng Biotechnol ; 12: 1368851, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638322

RESUMO

Breast cancer is a significant global health concern, with the overexpression of human epidermal growth factor receptor 2 (HER2/ERBB2) being a driver oncogene in 20%-30% of cases. Indeed, HER2/ERBB2 plays a crucial role in regulating cell growth, differentiation, and survival via a complex signaling network. Overexpression of HER2/ERBB2 is associated with more aggressive behavior and increased risk of brain metastases, which remains a significant clinical challenge for treatment. Recent research has highlighted the role of breast cancer secretomes in promoting tumor progression, including excessive proliferation, immune invasion, and resistance to anti-cancer therapy, and their potential as cancer biomarkers. In this study, we investigated the impact of ERBB2+ breast cancer SKBR-3 cell line compared with MCF10-A mammary non-tumorigenic cell conditioned medium on the electrophysiological activity and morphology of neural networks derived from neurons differentiated from human induced pluripotent stem cells. Our findings provide evidence of active modulation of neuronal-glial networks by SKBR-3 and MCF10-A conditioned medium. These results provide insights into the complex interactions between breast cancer cells and the surrounding microenvironment. Further research is necessary to identify the specific factors within breast cancer conditioned medium that mediate these effects and to develop targeted therapies that disrupt this interaction.

3.
Pharmaceutics ; 16(2)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38399288

RESUMO

Inflammation is a physiological response to a damaging stimulus but sometimes can be the cause of the onset of neurodegenerative diseases, atherosclerosis, and cancer. These pathologies are characterized by the overexpression of inflammatory markers like endothelial adhesion molecules, such as Vascular Cell Adhesion Molecule-1 (VCAM-1). In the present work, the development of liposomes for therapeutic targeted delivery to inflamed endothelia is described. The idea is to exploit a three-step pretargeting system based on the biotin-avidin high-affinity interaction: the first step involves a previously described biotin derivative bearing a VCAM-1 binding peptide; in the second step, the avidin derivative NeutrAvidinTM, which strongly binds to the biotin moiety, is injected; the final step is the administration of biotinylated liposomes that would bind to NeutravidinTM immobilized onto VCAM-1 overexpressing endothelium. Stealth biotinylated liposomes, prepared via the thin film hydration method followed by extrusion and purification via size exclusion chromatography, have been thoroughly characterized for their chemico-physical and morphological features and loaded with metformin hydrochloride, a potential anti-inflammatory agent. The three-step system, tested in vitro on different cell lines via confocal microscopy, FACS analysis and metformin uptake, has proved its suitability for therapeutic applications.

4.
ACS Appl Bio Mater ; 7(2): 827-838, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38227342

RESUMO

Extracellular vesicles (EVs) have emerged as potential vehicles for targeted drug delivery and diagnostic applications. However, achieving consistent and reliable functionalization of EV membranes remains a challenge. Copper-catalyzed click chemistry, commonly used for EV surface modification, poses limitations due to cytotoxicity and interference with biological systems. To overcome these limitations, we developed a standardized method for functionalizing an EV membrane via copper-free click chemistry. EVs derived from plasma hold immense potential as diagnostic and therapeutic agents. However, the isolation and functionalization of EVs from such a complex biofluid represent considerable challenges. We compared three different EV isolation methods to obtain an EV suspension with an optimal purity/yield ratio, and we identified sucrose cushion ultracentrifugation (sUC) as the ideal protocol. We then optimized the reaction conditions to successfully functionalize the plasma-EV surface through a copper-free click chemistry strategy with a fluorescently labeled azide, used as a proof-of-principle molecule. Click-EVs maintained their identity, size, and, more importantly, capacity to be efficiently taken up by responder tumor cells. Moreover, once internalized, click EVs partially followed the endosomal recycling route. The optimized reaction conditions and characterization techniques presented in this study offer a foundation for future investigations and applications of functionalized EVs in drug delivery, diagnostics, and therapeutics.


Assuntos
Química Click , Vesículas Extracelulares , Sistemas de Liberação de Medicamentos , Vesículas Extracelulares/química , Endossomos
5.
Cancers (Basel) ; 15(17)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37686579

RESUMO

BACKGROUND: Oncolytic viruses (OVs) have been utilized since 1990s for targeted cancer treatment. Our study examined the Measles-Mumps-Rubella (MMR) vaccine's cancer-killing potency against Glioblastoma (GBM), a therapy-resistant, aggressive cancer type. METHODOLOGY: We used GBM cell lines, primary GBM cells, and normal mice microglial cells, to assess the MMR vaccine's efficacy through cell viability, cell cycle analysis, intracellular viral load via RT-PCR, and Transmission Electron Microscopy (TEM). RESULTS: After 72 h of MMR treatment, GBM cell lines and primary GBM cells exhibited significant viability reduction compared to untreated cells. Conversely, normal microglial cells showed only minor changes in viability and morphology. Intracellular viral load tests indicated GBM cells' increased sensitivity to MMR viruses compared to normal cells. The cell cycle study also revealed measles and mumps viruses' crucial role in cytopathic effects, with the rubella virus causing cell cycle arrest. CONCLUSION: Herein the reported results demonstrate the anti-cancer activity of the MMR vaccine against GBM cells. Accordingly, the MMR vaccine warrants further study as a potential new tool for GBM therapy and relapse prevention. Therapeutic potential of the MMR vaccine has been found to be promising in earlier studies as well.

6.
Biochem Pharmacol ; 213: 115633, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37269887

RESUMO

Neratinib (NE) is an irreversible pan-ERBB tyrosine kinase inhibitor used to treat breast cancers (BCa) with amplification of the ERBB2/HER2/Neu gene or overexpression of the ERBB2 receptor. However, the mechanisms behind this process are not fully understood. Here we investigated the effects of NE on critical cell survival processes in ERBB2+ cancer cells. By kinome array analysis, we showed that NE time-dependently inhibited the phosphorylation of two distinct sets of kinases. The first set, including ERBB2 downstream signaling kinases such as ERK1/2, ATK, and AKT substrates, showed inhibition after 2 h of NE treatment. The second set, which comprised kinases involved in DNA damage response, displayed inhibition after 72 h. Flow cytometry analyses showed that NE induced G0/G1 cell cycle arrest and early apoptosis. By immunoblot, light and electron microscopy, we revealed that NE also transiently induced autophagy, mediated by increased expression levels and nuclear localization of TFEB and TFE3. Altered TFEB/TFE3 expression was accompanied by dysregulation of mitochondrial energy metabolism and dynamics, leading to a decrease in ATP production, glycolytic activity, and a transient downregulation of fission proteins. Increased TFEB and TFE3 expression was also observed in ERBB2-/ERBB1 + BCa cells, supporting that NE may act through other ERBB family members and/or other kinases. Overall, this study highlights NE as a potent activator of TFEB and TFE3, leading to the suppression of cancer cell survival through autophagy induction, cell cycle arrest, apoptosis, mitochondrial dysfunction and inhibition of DNA damage response.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Autofagia , Metabolismo Energético
7.
Membranes (Basel) ; 13(6)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37367744

RESUMO

Trastuzumab (Tz), an antibody targeting ERBB2, has significantly improved the prognosis for breast cancer (BCa) patients with overexpression of the ERBB2 receptor. However, Tz resistance poses a challenge to patient outcomes. Numerous mechanisms have been suggested to contribute to Tz resistance, and this study aimed to uncover shared mechanisms in in vitro models of acquired BCa Tz resistance. Three widely used ERBB2+ BCa cell lines, adapted to grow in Tz, were examined. Despite investigating potential changes in phenotype, proliferation, and ERBB2 membrane expression in these Tz-resistant (Tz-R) cell lines compared to wild-type (wt) cells, no common alterations were discovered. Instead, high-resolution mass spectrometry analysis revealed a shared set of differentially expressed proteins (DEPs) in Tz-R versus wt cells. Bioinformatic analysis demonstrated that all three Tz-R cell models exhibited modulation of proteins associated with lipid metabolism, organophosphate biosynthesis, and macromolecule methylation. Ultrastructural examination corroborated the presence of altered lipid droplets in resistant cells. These findings strongly support the notion that intricate metabolic adaptations, including lipid metabolism, protein phosphorylation, and potentially chromatin remodeling, may contribute to Tz resistance. The detection of 10 common DEPs across all three Tz-resistant cell lines offers promising avenues for future therapeutic interventions, providing potential targets to overcome Tz resistance and potentially improve patient outcomes in ERBB2+ breast cancer.

8.
Theranostics ; 13(5): 1470-1489, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37056573

RESUMO

Rationale: Mesenchymal stromal cells (MSCs)-derived extracellular vesicles (EVs) emerged as an innovative strategy for the treatment of chronic disorders such as osteoarthritis (OA). Biological activity of EVs is generally driven by their cargo, which might be influenced by microenvironment. Therefore, pre-conditioning strategies, including modifications in culture conditions or oxygen tension could directly impact on MSCs paracrine activity. In this study we selected an appropriate preconditioning system to induce cells to perform the most suitable therapeutic response by EV-encapsulated bioactive factors. Methods: A xeno-free supplement (XFS) was used for isolation and expansion of MSCs and compared to conventional fetal bovine serum (FBS) culture. Bone Marrow-derived MSCs (BMSCs) were pre-conditioned under normoxia (20% O2) or under hypoxia (1% O2) and EVs production was evaluated. Anti-OA activity was evaluated by using an in vitro inflammatory model. miRNA content was also explored, to select putative miRNA that could be involved in a biological function. Results: Modulation of IL-6, IL-8, COX-2 and PGE2 was evaluated on hACs simultaneously treated with IL-1α and BMSC-derived EVs. FBS-sEVs exerted a blunt inhibitory effect, while a strong anti-inflammatory outcome was achieved by XFS-sEVs. Interestingly, in both cases hypoxia pre-conditioning allowed to increase EVs effectiveness. Analysis of miRNA content showed the upregulation in XFS-hBMSC-derived EVs of miRNA known to have a chondroprotective role, such as let-7b-5p, miR-17, miR-145, miR-21-5p, miR-214-3p, miR-30b-5p, miR-30c-5p. Activated pathways and target genes were investigated in silico and upregulated miRNAs functionally validated in target cells. MiR-145 and miR-214 were found to protect chondrocytes from IL-1α-induced inflammation and to reduce production of pro-inflammatory cytokines. Conclusions: XFS medium was found to be suitable for isolation and expansion of MSCs, secreting EVs with a therapeutic cargo. The application of cells cultured exclusively in XFS overcomes issues of safety associated with serum-containing media and makes ready-to-use clinical therapies more accessible.


Assuntos
Técnicas de Cultura de Células , Células-Tronco Mesenquimais , MicroRNAs , Osteoartrite , Humanos , Células-Tronco Mesenquimais/química , Células-Tronco Mesenquimais/citologia , Vesículas Extracelulares/química , Osteoartrite/metabolismo , Osteoartrite/terapia , Cartilagem/patologia , NF-kappa B/metabolismo , Dinoprostona/metabolismo , Condrócitos/metabolismo , MicroRNAs/química , Soroalbumina Bovina/química , Interleucina-1alfa/metabolismo , Técnicas In Vitro
9.
Cells ; 12(6)2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36980174

RESUMO

The treatment of non-small cell lung cancer (NSCLC) has changed dramatically with the advent of immune checkpoint inhibitors (ICIs). Despite encouraging results, their efficacy remains limited to a subgroup of patients. Circulating immune checkpoints in soluble (s) form and associated with extracellular vesicles (EVs) represent promising markers, especially in ICI-based therapeutic settings. We evaluated the prognostic role of PD-L1 and of two B7 family members (B7-H3, B7-H4), both soluble and EV-associated, in a cohort of advanced NSCLC patients treated with first- (n = 56) or second-line (n = 126) ICIs. In treatment-naïve patients, high baseline concentrations of sPD-L1 (>24.2 pg/mL) were linked to worse survival, whereas high levels of sB7-H3 (>0.5 ng/mL) and sB7-H4 (>63.9 pg/mL) were associated with better outcomes. EV characterization confirmed the presence of EVs positive for PD-L1 and B7-H3, while only a small portion of EVs expressed B7-H4. The comparison between biomarker levels at the baseline and in the first radiological assessment under ICI-based treatment showed a significant decrease in EV-PD-L1 and an increase in EV-B7H3 in patients in the disease response to ICIs. Our study shows that sPD-L1, sB7-H3 and sB7-H4 levels are emerging prognostic markers in patients with advanced NSCLC treated with ICIs and suggests potential EV involvement in the disease response to ICIs.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Antígeno B7-H1 , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Prognóstico
10.
Ann Med ; 55(1): 72-88, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36495262

RESUMO

Introduction: Several neurodegenerative conditions are associated with a common histopathology within neurons of the central nervous system, consisting of the deposition of cytoplasmic inclusions of TAR DNA-binding protein 43 (TDP-43). Such inclusions have variably been described as morphologically and molecularly ordered aggregates having amyloid properties, as filaments without the cross-ß-structure and dye binding specific for amyloid, or as amorphous aggregates with no defined structure and fibrillar morphology.Aims and Methods: Here we have expressed human full-length TDP-43 in neuroblastoma x spinal cord 34 (NSC-34) cells to investigate the morphological, structural, and tinctorial properties of TDP-43 inclusions in situ. We have used last-generation amyloid diagnostic probes able to cross the cell membrane and detect amyloid in the cytoplasm and have adopted Raman and Fourier transform infrared microspectroscopies to study in situ the secondary structure of the TDP-43 protein in the inclusions. We have then used transmission electron microscopy to study the morphology of the TDP-43 inclusions.Results: The results show the absence of amyloid dye binding, the lack of an enrichment of cross-ß structure in the inclusions, and of a fibrillar texture in the round inclusions. The aggregates formed in vitro from the purified protein under conditions in which it is initially native also lack all these characteristics, ruling out a clear amyloid-like signature.Conclusions: These findings indicate a low propensity of TDP-43 to form amyloid fibrils and even non-amyloid filaments, under conditions in which the protein is initially native and undergoes its typical nucleus-to-cell mislocalization. It cannot be excluded that filaments emerge on the long time scale from such inclusions, but the high propensity of the protein to form initially other types of inclusions appear to be an essential characteristic of TDP-43 proteinopathies.KEY MESSAGESCytoplasmic inclusions of TDP-43 formed in NSC-34 cells do not stain with amyloid-diagnostic dyes, are not enriched with cross-ß structure, and do not show a fibrillar morphology.TDP-43 assemblies formed in vitro from pure TDP-43 do not have any hallmarks of amyloid.


Assuntos
Esclerose Lateral Amiotrófica , Degeneração Lobar Frontotemporal , Humanos , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Corpos de Inclusão/metabolismo , Corpos de Inclusão/patologia , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Degeneração Lobar Frontotemporal/metabolismo , Degeneração Lobar Frontotemporal/patologia
11.
Molecules ; 27(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36364243

RESUMO

Many different amphibian skin peptides have been characterized and proven to exert various biological actions, such as wound-healing, immunomodulatory, anti-oxidant, anti-inflammatory and anti-diabetic effects. In this work, the possible anti-steatotic effect of macrotympanain A1 (MA1) (FLPGLECVW), a skin peptide isolated from the Chinese odorous frog Odorrana macrotympana, was investigated. We used a well-established in vitro model of hepatic steatosis, consisting of lipid-loaded rat hepatoma FaO cells. In this model, a 24 h treatment with 10 µg/mL MA1 exerted a significant anti-steatotic action, being able to reduce intracellular triglyceride content. Accordingly, the number and diameter of cytosolic lipid droplets (LDs) were reduced by peptide treatment. The expression of key genes of hepatic lipid metabolism, such as PPARs and PLINs, was measured by real-time qPCR. MA1 counteracted the fatty acid-induced upregulation of PPARγ expression and increased PLIN3 expression, suggesting a role in promoting lipophagy. The present data demonstrate for the first time a direct anti-steatotic effect of a peptide from amphibian skin secretion and pave the way to further studies on the use of amphibian peptides for beneficial actions against metabolic diseases.


Assuntos
Fígado Gorduroso , Ratos , Animais , Fígado Gorduroso/metabolismo , Ranidae/metabolismo , Pele/metabolismo , Peptídeos/farmacologia , Peptídeos/química , PPAR gama/metabolismo
12.
J Plast Reconstr Aesthet Surg ; 75(11): 4069-4073, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36167709

RESUMO

Although there is increasing evidence of migraine headaches having extracranial origins, the exact mechanisms underlying the pathogenesis of surgically treated migraines continue to be poorly investigated and described. We studied the microscopic and ultrastructural characteristics of superficial temporal artery (STA) and occipital (OA) artery in the auriculotemporal and great occipital trigger points of migraine patients to determine their possible role in migraine etiopathogenesis. Fifteen biopsies, 10 of STA and 5 from OAs, were collected intraoperatively during migraine surgery and immediately processed for optical and ultramicroscopic analysis. We detected the following anomalies in all the specimens: (a) endothelial damage with internal elastic lamina fragmentation and intimal thickening; (b) marked irregularity in the shape and metachromasia of the vascular smooth muscle cells (VSMCs), separation of cells by abundant extracellular matrix and vacuoles. The electron microscopy analysis confirmed that presumed VSMCs infiltrated the intima layer revealing a consistent shift of VSMCs from contractile to synthetically active phenotypes, endosome-like organelles, multilamellar structures, abundant extracellular vacuoles filled with fine granular material and membranes, and extracellular vesicles in the matrix space surrounding synthetically active cells. Our study revealed specific alterations in the vasculature at the neurovascular bundles of the temporal and occipital trigger sites. These findings are indicative of an active involvement of the arteries in the auriculotemporal and great occipital trigger sites in evoking migraine.


Assuntos
Transtornos de Enxaqueca , Humanos , Transtornos de Enxaqueca/etiologia , Transtornos de Enxaqueca/cirurgia , Artérias Temporais/anatomia & histologia , Artérias
13.
Artigo em Inglês | MEDLINE | ID: mdl-35954723

RESUMO

Aluminum is an element found in nature and in cosmetic products. It can interfere with the metabolism of other cations, thus inducing gastrointestinal disorder. In cosmetics, aluminum is used in antiperspirants, lipsticks, and toothpastes. The aim of this work is to investigate aluminum bioavailability after accidental oral ingestion derived from the use of a toothpaste containing a greater amount of aluminum hydroxide than advised by the Scientific Committee on Consumer Safety (SCCS). To simulate in vitro toothpaste accidental ingestion, the INFOGEST model was employed, and the amount of aluminum was measured through the ICP-AES analysis. Tissue barrier integrity was analyzed by measuring transepithelial electric resistance, and the tissue architecture was checked through light microscopy. The margin of safety was also calculated. Overall, our results indicate that the acute exposure to aluminum accidentally ingested from toothpastes is safe for the final user, even in amounts higher than SCCS indications.


Assuntos
Alumínio , Cosméticos , Disponibilidade Biológica , Qualidade de Produtos para o Consumidor , Cosméticos/toxicidade , Cremes Dentais
14.
Sci Adv ; 8(30): eabm6376, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35895809

RESUMO

A number of neurodegenerative conditions are associated with the formation of cytosolic inclusions of TDP-43 within neurons. We expressed full-length TDP-43 in a motoneuron/neuroblastoma hybrid cell line (NSC-34) and exploited the high-resolution power of stimulated emission depletion microscopy to monitor the changes of nuclear and cytoplasmic TDP-43 levels and the formation of various size classes of cytoplasmic TDP-43 aggregates with time. Concomitantly, we monitored oxidative stress and mitochondrial impairment using the MitoSOX and MTT reduction assays, respectively. Using a quantitative biology approach, we attributed neuronal dysfunction associated with cytoplasmic deposition component to the formation of the largest inclusions, independently of stress granules. This is in contrast to other neurodegenerative diseases where toxicity is attributed to small oligomers. Using specific inhibitors, markers, and electron microscopy, the proteasome and autophagy were found to target mainly the largest deleterious inclusions, but their efficiency soon decreases without full recovery of neuronal viability.


Assuntos
Proteínas de Ligação a DNA , Corpos de Inclusão , Doenças Neurodegenerativas , Animais , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Corpos de Inclusão/metabolismo , Camundongos , Neurônios Motores/metabolismo , Doenças Neurodegenerativas/metabolismo
15.
Neuropathol Appl Neurobiol ; 48(5): e12818, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35501124

RESUMO

AIM: Mutations in the valosin-containing protein (VCP) gene cause various lethal proteinopathies that mainly include inclusion body myopathy with Paget's disease of bone and frontotemporal dementia (IBMPFD) and amyotrophic lateral sclerosis (ALS). Different pathological mechanisms have been proposed. Here, we define the impact of VCP mutants on lysosomes and how cellular homeostasis is restored by inducing autophagy in the presence of lysosomal damage. METHODS: By electron microscopy, we studied lysosomal morphology in VCP animal and motoneuronal models. With the use of western blotting, real-time quantitative polymerase chain reaction (RT-qPCR), immunofluorescence and filter trap assay, we evaluated the effect of selected VCP mutants in neuronal cells on lysosome size and activity, lysosomal membrane permeabilization and their impact on autophagy. RESULTS: We found that VCP mutants induce the formation of aberrant multilamellar organelles in VCP animal and cell models similar to those found in patients with VCP mutations or with lysosomal storage disorders. In neuronal cells, we found altered lysosomal activity characterised by membrane permeabilization with galectin-3 redistribution and activation of PPP3CB. This selectively activated the autophagy/lysosomal transcriptional regulator TFE3, but not TFEB, and enhanced both SQSTM1/p62 and lipidated MAP1LC3B levels inducing autophagy. Moreover, we found that wild type VCP, but not the mutants, counteracted lysosomal damage induced either by trehalose or by a mutant form of SOD1 (G93A), also blocking the formation of its insoluble intracellular aggregates. Thus, chronic activation of autophagy might fuel the formation of multilamellar bodies. CONCLUSION: Together, our findings provide insights into the pathogenesis of VCP-related diseases, by proposing a novel mechanism of multilamellar body formation induced by VCP mutants that involves lysosomal damage and induction of lysophagy.


Assuntos
Adenosina Trifosfatases , Proteínas de Ciclo Celular , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Animais , Autofagia/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Lisossomos/metabolismo , Neurônios Motores/metabolismo , Ativação Transcricional , Proteína com Valosina/genética , Proteína com Valosina/metabolismo
16.
J Plast Reconstr Aesthet Surg ; 75(7): 2387-2440, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35504787

RESUMO

In this paper, we describe a simple and reliable way to preoperatively localize the auriculotemporal nerve in migraine surgery. We measured the correspondence of this cutaneous landmark and the ATN in twelve migraine patients operated at Site V. Our findings demonstrated a very high concordance between the described point and the underlying auriculotemporal nerve. This method might be of some utility in the preoperative planning of Site V Migraine surgery, in the strive of reducing the length of cutaneous incision and the invasiveness of the procedure.


Assuntos
Transtornos de Enxaqueca , Humanos , Nervo Mandibular/cirurgia , Transtornos de Enxaqueca/cirurgia
17.
Membranes (Basel) ; 12(4)2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35448364

RESUMO

Endocytosis is a critical process for cell growth and viability. It mediates nutrient uptake, guarantees plasma membrane homeostasis, and generates intracellular signaling cascades. Moreover, it plays an important role in dead cell clearance and defense against external microbes. Finally, endocytosis is an important cellular route for the delivery of nanomedicines for therapeutic treatments. Thus, it is not surprising that both environmental and genetic perturbation of endocytosis have been associated with several human conditions such as cancer, neurological disorders, and virus infections, among others. Over the last decades, a lot of research has been focused on developing advanced imaging methods to monitor endocytosis events with high resolution in living cells and tissues. These include fluorescence imaging, electron microscopy, and correlative and super-resolution microscopy. In this review, we outline the major endocytic pathways and briefly discuss how defects in the molecular machinery of these pathways lead to disease. We then discuss the current imaging methodologies used to study endocytosis in different contexts, highlighting strengths and weaknesses.

18.
Histochem Cell Biol ; 157(4): 459-465, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35091837

RESUMO

Migraine is a neurological disorder and one of the most common pain conditions worldwide. Despite its prevalence, the basic biology and underlying mechanisms contributing to the development of migraine are still poorly understood. It is still unclear, for instance, whether the vasculature, both extra and intracranial, plays a significant role in the generation of migraine pain. Neuroimaging data, indeed, have reported conflicting results on blood vessels abnormalities like vasodilation, while functional studies suggest that vessels dysfunction may extend beyond vasodilation. Here we combined light and electron microscopy imaging to investigate the fine structure of superficial temporal (STA) and occipital arteries (OA) from patients that underwent minimally invasive surgery for migraine. Using optical microscopy, we observed that both STA and OA vessels showed marked endothelial thickening and internal elastic lamina fragmentation. In the muscular layer, we found profound shape changes of vascular smooth muscle cells (VSMCs), abundant extracellular matrix, and the presence of clear extracellular vacuoles. The electron microscopy analysis confirmed putative VSMCs infiltrated within the intima layer and revealed a consistent shifting of VSMCs from contractile to a synthetically active phenotype. We also report the presence of (i) abundant extracellular vacuoles filled with fine granular material and membranes, (ii) multilamellar structures, (iii) endosome-like organelles, and (iv) bona fide extracellular vesicles in the matrix space surrounding synthetically active cells. As both the endothelial layer and VSMCs coordinate a variety of vascular functions, these results suggest that a significant vascular remodeling is occurring in STA and OA of migraine patients. Thus, this phenomenon may represent an important target for future investigation designed toward the development of new therapeutic approaches.


Assuntos
Transtornos de Enxaqueca , Remodelação Vascular , Humanos , Microscopia Eletrônica , Músculo Liso Vascular , Dor
19.
Stem Cells Transl Med ; 10(12): 1680-1695, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34480533

RESUMO

The secretome of mesenchymal stromal cells (MSCs) derived from different tissue sources is considered an innovative therapeutic tool for regenerative medicine. Although adipose tissue-and bone marrow-derived MSCs (ADSCs and BMSCs, respectively) share many biological features, the different tissue origins can be mirrored by variations in their secretory profile, and in particular in the secreted extracellular vesicles (EVs). In this study, we carried out a detailed and comparative characterization of middle- and small-sized EVs (mEVs and sEVs, respectively) released by either ADSCs or BMSCs. Their involvement in an endochondral ossification setting was investigated using ex vivo metatarsal culture models that allowed to explore both blood vessel sprouting and bone growth plate dynamics. Although EVs separated from both cell sources presented similar characteristics in terms of size, concentration, and marker expression, they exhibited different characteristics in terms of protein content and functional effects. ADSC-EVs overexpressed pro-angiogenic factors in comparison to the BMSC-counterpart, and, consequently, they were able to induce a significant increase in endothelial cord outgrowth. On the other hand, BMSC-EVs contained a higher amount of pro-differentiation and chemotactic proteins, and they were able to prompt growth plate organization. The present study highlights the importance of selecting the appropriate cell source of EVs for targeted therapeutic applications.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Tecido Adiposo , Medula Óssea , Proliferação de Células , Células Cultivadas , Condrogênese , Vesículas Extracelulares/metabolismo
20.
Int J Mol Sci ; 22(13)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203322

RESUMO

BACKGROUND: In space, the reduction or loss of the gravity vector greatly affects the interaction between cells. Since the beginning of the space age, microgravity has been identified as an informative tool in biomedicine, including cancer research. The A549 cell line is a hypotriploid human alveolar basal epithelial cell line widely used as a model for lung adenocarcinoma. Microgravity has been reported to interfere with mitochondrial activity, energy metabolism, cell vitality and proliferation, chemosensitivity, invasion and morphology of cells and organelles in various biological systems. Concerning lung cancer, several studies have reported the ability of microgravity to modulate the carcinogenic and metastatic process. To investigate these processes, A549 cells were exposed to simulated microgravity (µG) for different time points. METHODS: We performed cell cycle and proliferation assays, ultrastructural analysis of mitochondria architecture, as well as a global analysis of miRNA modulated under µG conditions. RESULTS: The exposure of A549 cells to microgravity is accompanied by the generation of polynucleated cells, cell cycle imbalance, growth inhibition, and gross morphological abnormalities, the most evident are highly damaged mitochondria. Global miRNA analysis defined a pool of miRNAs associated with µG solicitation mainly involved in cell cycle regulation, apoptosis, and stress response. To our knowledge, this is the first global miRNA analysis of A549 exposed to microgravity reported. Despite these results, it is not possible to draw any conclusion concerning the ability of µG to interfere with the cancerogenic or the metastatic processes in A549 cells. CONCLUSIONS: Our results provide evidence that mitochondria are strongly sensitive to µG. We suggest that mitochondria damage might in turn trigger miRNA modulation related to cell cycle imbalance.


Assuntos
MicroRNAs/metabolismo , Mitocôndrias/metabolismo , Células A549 , Células Epiteliais Alveolares/citologia , Células Epiteliais Alveolares/metabolismo , Ciclo Celular/genética , Ciclo Celular/fisiologia , Proliferação de Células/genética , Proliferação de Células/fisiologia , Metabolismo Energético/fisiologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA