Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Cancer ; 24(1): 767, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926864

RESUMO

BACKGROUND: Breast cancer (BrCa) is a predominant malignancy, with metastasis occurring in one in eight patients, nearly half of which target the bone, leading to serious complications such as pain, fractures, and compromised mobility. Structural rigidity, crucial for bone strength, becomes compromised with osteolytic lesions, highlighting the vulnerability and increased fracture risk in affected areas. Historically, two-dimensional radiographs have been employed to predict these fracture risks; however, their limitations in capturing the three-dimensional structural and material changes in bone have raised concerns. Recent advances in CT-based Structural Rigidity Analysis (CTRA), offer a promising, more accurate non-invasive 3D approach. This study aims to assess the efficacy of CTRA in monitoring osteolytic lesions' progression and response to therapy, suggesting its potential superiority over existing methodologies in guiding treatment strategies. METHODS: Twenty-seven female nude rats underwent femoral intra-medullary inoculation with MDA-MB-231 human breast cancer cells or saline control. They were divided into Control, Cancer Control, Ibandronate, and Paclitaxel groups. Osteolytic progression was monitored weekly using biplanar radiography, quantitative computed tomography (QCT), and dual-energy X-ray absorptiometry (DEXA). CTRA was employed to predict fracture risk, normalized using the contralateral femur. Statistical analyses, including Kruskal-Wallis and ANOVA, assessed differences in outcomes among groups and over time. RESULTS: Biplanar radiographs showed treatment benefits over time; however, only certain time-specific differences between the Control and other treatment groups were discernible. Notably, observer subjectivity in X-ray scoring became evident, with significant inter-operator variations. DEXA measurements for metaphyseal Bone Mineral Content (BMC) did not exhibit notable differences between groups. Although diaphyseal BMC highlighted some variance, it did not reveal significant differences between treatments at specific time points, suggesting a limited ability for DEXA to differentiate between treatment effects. In contrast, the CTRA consistently demonstrated variations across different treatments, effectively capturing bone rigidity changes over time, and the axial- (EA), bending- (EI), and torsional rigidity (GJ) outcomes from the CTRA method successfully distinguished differences among treatments at specific time points. CONCLUSION: Traditional approaches, such as biplanar radiographs and DEXA, have exhibited inherent limitations, notably observer bias and time-specific inefficacies. Our study accentuates the capability of CTRA in capturing real-time, progressive changes in bone structure, with the potential to predict fractures more accurately and provide a more objective analysis. Ultimately, this innovative approach may bridge the existing gap in clinical guidelines, ushering in enhanced Clinical Decision Support Tool (CDST) for both surgical and non-surgical treatments.


Assuntos
Neoplasias Ósseas , Neoplasias da Mama , Tomografia Computadorizada por Raios X , Animais , Feminino , Ratos , Humanos , Tomografia Computadorizada por Raios X/métodos , Neoplasias Ósseas/secundário , Neoplasias Ósseas/diagnóstico por imagem , Neoplasias da Mama/patologia , Neoplasias da Mama/diagnóstico por imagem , Absorciometria de Fóton/métodos , Densidade Óssea , Ratos Nus , Paclitaxel/uso terapêutico , Paclitaxel/farmacologia , Paclitaxel/administração & dosagem , Linhagem Celular Tumoral , Osteólise/diagnóstico por imagem , Ácido Ibandrônico/uso terapêutico , Ácido Ibandrônico/farmacologia , Conservadores da Densidade Óssea/uso terapêutico , Conservadores da Densidade Óssea/farmacologia
2.
Aesthet Surg J ; 38(11): 1213-1224, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-29415242

RESUMO

BACKGROUND: Liposuction is one of the most performed cosmetic surgery procedures. In a previously reported study, gold-nanoparticle (GNP) laser-assisted liposuction (NanoLipo) was shown to improve procedure parameters and outcomes in a porcine model. OBJECTIVES: An ex vivo human liposuction model was developed to assess the ease, efficacy, and outcomes of NanoLipo, and to further explore its mechanism of action in facilitating liposuction. METHODS: NanoLipo was compared to a control without GNPs in sets of fresh, nonperfused, anatomically symmetric, matched tissue specimens from 12 patients. A subset of three experiments was performed under single-blinded conditions. Intraoperative assessments included lipoaspirate volume, percentage of free oil, ease of removal, and temperature rise. Specimens were palpated, visualized for evenness, and graded with and without skin. Postoperative assessment included viability staining of the lipoaspirate and remaining tissues. Microcomputed tomography was used to assess the distribution of infused GNPs within the tissues. RESULTS: NanoLipo consistently removed more adipose tissue with more liberated triglycerides compared to control. NanoLipo specimens were smoother, thinner, and had fewer and smaller irregularities. Infused solutions preferentially distributed between fibrous membranes and fat pearls. After NanoLipo, selective structural-tissue disruptions, indicated by loss of metabolic activity, were observed. Thus, NanoLipo likely creates a bimodal mechanism of action whereby fat lobules are dislodged from surrounding fibro-connective tissue, while lipolysis is simultaneously induced. CONCLUSIONS: NanoLipo showed many advantages compared to control under blinded and nonblinded conditions. This technology may be promising in facilitating fat removal.


Assuntos
Ouro/administração & dosagem , Hipertermia Induzida/métodos , Lipectomia/métodos , Nanopartículas Metálicas/administração & dosagem , Fotoquimioterapia/métodos , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/cirurgia , Humanos , Hipertermia Induzida/instrumentação , Lasers , Lipectomia/instrumentação , Fotoquimioterapia/instrumentação , Método Simples-Cego
3.
J Bone Miner Res ; 32(1): 46-59, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27391172

RESUMO

Most US Food and Drug Administration (FDA)-approved treatments for osteoporosis target osteoclastic bone resorption. Only PTH derivatives improve bone formation, but they have drawbacks, and novel bone-anabolic agents are needed. Nitrates, which generate NO, improved BMD in estrogen-deficient rats and may improve bone formation markers and BMD in postmenopausal women. However, nitrates are limited by induction of oxidative stress and development of tolerance, and may increase cardiovascular mortality after long-term use. Here we studied nitrosyl-cobinamide (NO-Cbi), a novel, direct NO-releasing agent, in a mouse model of estrogen deficiency-induced osteoporosis. In murine primary osteoblasts, NO-Cbi increased intracellular cGMP, Wnt/ß-catenin signaling, proliferation, and osteoblastic gene expression, and protected cells from apoptosis. Correspondingly, in intact and ovariectomized (OVX) female C57Bl/6 mice, NO-Cbi increased serum cGMP concentrations, bone formation, and osteoblastic gene expression, and in OVX mice, it prevented osteocyte apoptosis. NO-Cbi reduced osteoclasts in intact mice and prevented the known increase in osteoclasts in OVX mice, partially through a reduction in the RANKL/osteoprotegerin gene expression ratio, which regulates osteoclast differentiation, and partially through direct inhibition of osteoclast differentiation, observed in vitro in the presence of excess RANKL. The positive NO effects in osteoblasts were mediated by cGMP/protein kinase G (PKG), but some of the osteoclast-inhibitory effects appeared to be cGMP-independent. NO-Cbi increased trabecular bone mass in both intact and OVX mice, consistent with its in vitro effects on osteoblasts and osteoclasts. NO-Cbi is a novel direct NO-releasing agent that, in contrast to nitrates, does not generate oxygen radicals, and combines anabolic and antiresorptive effects in bone, making it an excellent candidate for treating osteoporosis. © 2016 American Society for Bone and Mineral Research.


Assuntos
Osso Esponjoso/anatomia & histologia , Doadores de Óxido Nítrico/farmacologia , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Ovariectomia , Animais , Apoptose/efeitos dos fármacos , Osso Esponjoso/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cobamidas/farmacologia , GMP Cíclico/sangue , GMP Cíclico/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Estrogênios/deficiência , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Tamanho do Órgão/efeitos dos fármacos , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoclastos/citologia , Osteoclastos/efeitos dos fármacos , Osteócitos/citologia , Osteócitos/efeitos dos fármacos , Osteócitos/metabolismo , Osteoprotegerina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ligante RANK/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos
4.
J Bone Joint Surg Am ; 98(1): 23-34, 2016 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-26738900

RESUMO

BACKGROUND: The chondrogenic potential of culture-expanded bone-marrow-derived mesenchymal stem cells (BMDMSCs) is well described. Numerous studies have also shown enhanced repair when BMDMSCs, scaffolds, and growth factors are placed into chondral defects. Platelets provide a rich milieu of growth factors and, along with fibrin, are readily available for clinical use. The objective of this study was to determine if the addition of BMDMSCs to an autologous platelet-enriched fibrin (APEF) scaffold enhances chondral repair compared with APEF alone. METHODS: A 15-mm-diameter full-thickness chondral defect was created on the lateral trochlear ridge of both stifle joints of twelve adult horses. In each animal, one defect was randomly assigned to receive APEF+BMDMSCs and the contralateral defect received APEF alone. Repair tissues were evaluated one year later with arthroscopy, histological examination, magnetic resonance imaging (MRI), micro-computed tomography (micro-CT), and biomechanical testing. RESULTS: The arthroscopic findings, MRI T2 map, histological scores, structural stiffness, and material stiffness were similar (p > 0.05) between the APEF and APEF+BMDMSC-treated repairs at one year. Ectopic bone was observed within the repair tissue in four of twelve APEF+BMDMSC-treated defects. Defects repaired with APEF alone had less trabecular bone edema (as seen on MRI) compared with defects repaired with APEF+BMDMSCs. Micro-CT analysis showed thinner repair tissue in defects repaired with APEF+BMDMSCs than in those treated with APEF alone (p < 0.05). CONCLUSIONS: APEF alone resulted in thicker repair tissue than was seen with APEF+BMDMSCs. The addition of BMDMSCs to APEF did not enhance cartilage repair and stimulated bone formation in some cartilage defects. CLINICAL RELEVANCE: APEF supported repair of critical-size full-thickness chondral defects in horses, which was not improved by the addition of BMDMSCs. This work supports further investigation to determine whether APEF enhances cartilage repair in humans.


Assuntos
Doenças das Cartilagens/cirurgia , Cartilagem Articular/cirurgia , Fibrina/farmacologia , Transplante de Células-Tronco Mesenquimais/métodos , Animais , Artroscopia/métodos , Biópsia por Agulha , Plaquetas , Doenças das Cartilagens/patologia , Cartilagem Articular/patologia , Modelos Animais de Doenças , Fibrina/administração & dosagem , Seguimentos , Cavalos , Humanos , Imuno-Histoquímica , Imageamento por Ressonância Magnética/métodos , Distribuição Aleatória , Engenharia Tecidual/métodos , Alicerces Teciduais , Transplante Autólogo , Resultado do Tratamento
5.
J Bone Miner Res ; 31(6): 1275-86, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26773408

RESUMO

We have previously shown that ablation of either the Phospho1 or Alpl gene, encoding PHOSPHO1 and tissue-nonspecific alkaline phosphatase (TNAP) respectively, lead to hyperosteoidosis, but that their chondrocyte-derived and osteoblast-derived matrix vesicles (MVs) are able to initiate mineralization. In contrast, the double ablation of Phospho1 and Alpl completely abolish initiation and progression of skeletal mineralization. We argued that MVs initiate mineralization by a dual mechanism: PHOSPHO1-mediated intravesicular generation of inorganic phosphate (Pi ) and phosphate transporter-mediated influx of Pi . To test this hypothesis, we generated mice with col2a1-driven Cre-mediated ablation of Slc20a1, hereafter referred to as Pi t1, alone or in combination with a Phospho1 gene deletion. Pi t1(col2/col2) mice did not show any major phenotypic abnormalities, whereas severe skeletal deformities were observed in the [Phospho1(-/-) ; Pi t1(col2/col2) ] double knockout mice that were more pronounced than those observed in the Phospho1(-/-) mice. Histological analysis of [Phospho1(-/-) ; Pi t1(col2/col2) ] bones showed growth plate abnormalities with a shorter hypertrophic chondrocyte zone and extensive hyperosteoidosis. The [Phospho1(-/-) ; Pi t1(col2/col2) ] skeleton displayed significant decreases in BV/TV%, trabecular number, and bone mineral density, as well as decreased stiffness, decreased strength, and increased postyield deflection compared to Phospho1(-/-) mice. Using atomic force microscopy we found that ∼80% of [Phospho1(-/-) ; Pi t1(col2/col2) ] MVs were devoid of mineral in comparison to ∼50% for the Phospho1(-/-) MVs and ∼25% for the WT and Pi t1(col2/col2) MVs. We also found a significant decrease in the number of MVs produced by both Phospho1(-/-) and [Phospho1(-/-) ; Pi t1(col2/col2) ] chondrocytes. These data support the involvement of phosphate transporter 1, hereafter referred to as Pi T-1, in the initiation of skeletal mineralization and provide compelling evidence that PHOSPHO1 function is involved in MV biogenesis. © 2016 American Society for Bone and Mineral Research.


Assuntos
Densidade Óssea/fisiologia , Calcificação Fisiológica/fisiologia , Condrócitos/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/metabolismo , Animais , Camundongos , Camundongos Knockout , Monoéster Fosfórico Hidrolases/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/genética
6.
Cartilage ; 5(1): 16-27, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24489999

RESUMO

OBJECTIVE: To describe and apply a semi-quantitative MRI scoring system for multi-feature analysis of cartilage defect repair in the knee by osteochondral allografts, and to correlate this scoring system with histopathologic, micro-computed tomography (µCT), and biomechanical reference standards using a goat repair model. DESIGN: Fourteen adult goats had two osteochondral allografts implanted into each knee: one in the medial femoral condyle (MFC) and one in the lateral trochlea (LT). At 12 months, goats were euthanized and MRI was performed. Two blinded radiologists independently rated nine primary features for each graft, including cartilage signal, fill, edge integration, surface congruity, calcified cartilage integrity, subchondral bone plate congruity, subchondral bone marrow signal, osseous integration, and presence of cystic changes. Four ancillary features of the joint were also evaluated, including opposing cartilage, meniscal tears, synovitis, and fat-pad scarring. Comparison was made with histological and µCT reference standards as well as biomechanical measures. Interobserver agreement and agreement with reference standards was assessed. Cohen's kappa, Spearman's correlation, and Kruskal-Wallis tests were used as appropriate. RESULTS: There was substantial agreement (κ>0.6, p<0.001) for each MRI feature and with comparison against reference standards, except for cartilage edge integration (κ=0.6). There was a strong positive correlation between MRI and reference standard scores (ρ=0.86, p<0.01). OCAMRISS was sensitive to differences in outcomes between the types of allografts. CONCLUSIONS: We have described a comprehensive MRI scoring system for osteochondral allografts and have validated this scoring system with histopathologic and µCT reference standards as well as biomechanical indentation testing.

7.
Bone ; 57(1): 259-68, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23958821

RESUMO

The efficacy of osteochondral allografts (OCAs) may be affected by osseous support of the articular cartilage, and thus affected by bone healing and remodeling in the OCA and surrounding host. Bone cysts, and their communication pathways, may be present in various locations after OCA insertion and reflect distinct pathogenic mechanisms. Previously, we analyzed the effect of OCA storage (FRESH, 4°C/14d, 4°C/28d, FROZEN) on cartilage quality in fifteen adult goats after 12months in vivo. The objectives of this study were to further analyze OCAs and contralateral non-operated (Non-Op) CONTROLS from the medial femoral condyle to (1) determine the effect of OCA storage on local subchondral bone (ScB) and trabecular bone (TB) structure, (2) characterize the location and structure of bone cysts and channels, and (3) assess the relationship between cartilage and bone properties. (1) Overall bone structure after OCAs was altered compared to Non-Op, with OCA samples displaying bone cysts, ScB channels, and ScB roughening. ScB BV/TV in FROZEN OCAs was lower than Non-Op and other OCAs. TB BV/TV in FRESH, 4°C/14d, and 4°C/28d OCAs did not vary compared to Non-Op, but BS/TV was lower. (2) OCAs contained "basal" cysts, localized to deeper regions, some "subchondral" cysts, localized near the bone-cartilage interface, and some ScB channels. TB surrounding basal cysts exhibited higher BV/TV than Non-Op. (3) Basal cysts occurred (a) in isolation, (b) with subchondral cysts and ScB channels, (c) with ScB channels, or (d) with subchondral cysts, ScB channels, and ScB erosion. Deterioration of cartilage gross morphology was strongly associated with abnormal µCT bone structure. Evidence of cartilage-bone communication following OCA repair may favor fluid intrusion as a mechanism for subchondral cyst formation, while bone resorption at the graft-host interface without affecting overall bone and cartilage structure may favor bony contusion mechanism for basal cyst formation. These findings suggest that cysts occurring after OCAs may result from aberrant mechanobiology due to (1) altered compartmentalization that normally separates overlying cartilage and subchondral bone, either from distinct ScB channels or more general ScB plate deterioration, and (2) bone resorption at the basal graft-host interface.


Assuntos
Cistos Ósseos/diagnóstico , Osso e Ossos/citologia , Osso e Ossos/patologia , Cartilagem/citologia , Animais , Cistos Ósseos/patologia , Osso e Ossos/cirurgia , Cabras , Transplante Homólogo
8.
J Bone Miner Res ; 27(8): 1722-34, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22461224

RESUMO

Hypophosphatasia (HPP) is the inborn error of metabolism characterized by deficiency of alkaline phosphatase activity, leading to rickets or osteomalacia and to dental defects. HPP occurs from loss-of-function mutations within the gene that encodes the tissue-nonspecific isozyme of alkaline phosphatase (TNAP). TNAP knockout (Alpl(-/-), aka Akp2(-/-)) mice closely phenocopy infantile HPP, including the rickets, vitamin B6-responsive seizures, improper dentin mineralization, and lack of acellular cementum. Here, we report that lack of TNAP in Alpl(-/-) mice also causes severe enamel defects, which are preventable by enzyme replacement with mineral-targeted TNAP (ENB-0040). Immunohistochemistry was used to map the spatiotemporal expression of TNAP in the tissues of the developing enamel organ of healthy mouse molars and incisors. We found strong, stage-specific expression of TNAP in ameloblasts. In the Alpl(-/-) mice, histological, µCT, and scanning electron microscopy analysis showed reduced mineralization and disrupted organization of the rods and inter-rod structures in enamel of both the molars and incisors. All of these abnormalities were prevented in mice receiving from birth daily subcutaneous injections of mineral-targeting, human TNAP at 8.2 mg/kg/day for up to 44 days. These data reveal an important role for TNAP in enamel mineralization and demonstrate the efficacy of mineral-targeted TNAP to prevent enamel defects in HPP.


Assuntos
Fosfatase Alcalina/uso terapêutico , Esmalte Dentário/patologia , Terapia de Reposição de Enzimas , Hipofosfatasia/prevenção & controle , Hipofosfatasia/terapia , Imunoglobulina G/uso terapêutico , Proteínas Recombinantes de Fusão/uso terapêutico , Fosfatase Alcalina/deficiência , Fosfatase Alcalina/metabolismo , Animais , Esmalte Dentário/diagnóstico por imagem , Esmalte Dentário/embriologia , Esmalte Dentário/enzimologia , Humanos , Imuno-Histoquímica , Incisivo/diagnóstico por imagem , Incisivo/patologia , Incisivo/ultraestrutura , Camundongos , Minerais/metabolismo , Dente Molar/diagnóstico por imagem , Dente Molar/patologia , Dente Molar/ultraestrutura , Transporte Proteico , Microtomografia por Raio-X
9.
Bone ; 49(2): 250-6, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21458605

RESUMO

Hypophosphatasia (HPP) features rickets or osteomalacia from tissue-nonspecific alkaline phosphatase (TNSALP) deficiency due to deactivating mutations within the ALPL gene. Enzyme replacement therapy with a bone-targeted, recombinant TNSALP (sALP-FcD(10), renamed ENB-0040) prevents manifestations of HPP when initiated at birth in TNSALP knockout (Akp2(-/-)) mice. Here, we evaluated the dose-response relationship of ENB-0040 to various phenotypic traits of Akp2(-/-) mice receiving daily subcutaneous (SC) injections of ENB-0040 from birth at 0.5, 2.0, or 8.2mg/kg for 43days. Radiographs, µCT, and histomorphometric analyses documented better bone mineralization with increasing doses of ENB-0040. We found a clear, positive correlation between ENB-0040 dose and prevention of mineralization defects of the feet, rib cage, lower limbs, and jaw bones. According to a dose-response model, the ED(80) (the dose that prevents bone defects in 80% of mice) was 3.2, 2.8 and 2.9mg/kg/day for these sites, respectively. Long bones seemed to respond to lower daily doses of ENB-0040. There was also a positive relationship between ENB-0040 dose and survival. Median survival, body weight, and bone length all improved with increasing doses of ENB-0040. Urinary PP(i) concentrations remained elevated in all treatment groups, indicating that while this parameter is a good biochemical marker for diagnosing HPP in patients, it may not be a good follow up marker for evaluating response to treatment when administering bone-targeted TNSALP to mice. These dose-response relationships strongly support the pharmacological efficacy of ENB-0040 for HPP, and provide the experimental basis for the therapeutic range of ENB-0040 chosen for clinical trials.


Assuntos
Fosfatase Alcalina/metabolismo , Hipofosfatasia/tratamento farmacológico , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico , Fosfatase Alcalina/genética , Animais , Terapia de Reposição de Enzimas/métodos , Camundongos , Camundongos Knockout , Osteomalacia/tratamento farmacológico , Proteínas Recombinantes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA