Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4758, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902234

RESUMO

To uncover molecular changes underlying blood-brain-barrier dysfunction in Alzheimer's disease, we performed single nucleus RNA sequencing in 24 Alzheimer's disease and control brains and focused on vascular and astrocyte clusters as main cell types of blood-brain-barrier gliovascular-unit. The majority of the vascular transcriptional changes were in pericytes. Of the vascular molecular targets predicted to interact with astrocytic ligands, SMAD3, upregulated in Alzheimer's disease pericytes, has the highest number of ligands including VEGFA, downregulated in Alzheimer's disease astrocytes. We validated these findings with external datasets comprising 4,730 pericyte and 150,664 astrocyte nuclei. Blood SMAD3 levels are associated with Alzheimer's disease-related neuroimaging outcomes. We determined inverse relationships between pericytic SMAD3 and astrocytic VEGFA in human iPSC and zebrafish models. Here, we detect vast transcriptome changes in Alzheimer's disease at the gliovascular-unit, prioritize perturbed pericytic SMAD3-astrocytic VEGFA interactions, and validate these in cross-species models to provide a molecular mechanism of blood-brain-barrier disintegrity in Alzheimer's disease.


Assuntos
Doença de Alzheimer , Astrócitos , Barreira Hematoencefálica , Pericitos , Proteína Smad3 , Fator A de Crescimento do Endotélio Vascular , Peixe-Zebra , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Humanos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Proteína Smad3/metabolismo , Proteína Smad3/genética , Astrócitos/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Animais , Pericitos/metabolismo , Pericitos/patologia , Masculino , Células-Tronco Pluripotentes Induzidas/metabolismo , Feminino , Idoso , Transcriptoma , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/irrigação sanguínea , Idoso de 80 Anos ou mais , Modelos Animais de Doenças
2.
Data Brief ; 17: 397-400, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29876408

RESUMO

In this article, we report a small RNA data set obtained from human T cell acute leukemia Jurkat cells, which were treated with the universal apoptotic agent camptothecin. Based on the Annexin-V labeling pattern, we sorted two Jurkat subpopulations in treated cells: one that is sensitive to the drug and the other being relatively more resistant. We report new original data that include the frequency of tRNA-derived fragments (tRF) in drug-sensitive and resistant cells. We also present partially analyzed data to show the origin of reads on tRNAs as well as the borders of the fragments. We believe that this data can benefit the science community working in the field of tRF and/or apoptosis.

3.
Turk J Biol ; 42(2): 113-122, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30814873

RESUMO

MicroRNAs (miRNAs) are small noncoding RNAs of about 19-25 nt that regulate gene expression posttranscriptionally under various cellular conditions, including apoptosis. The miRNAs involved in modulation of apoptotic events in T cells are partially known. However, heterogeneity associated with cell lines makes it difficult to interpret gene expression signatures, especially in cancer-related cell lines. Treatment of the Jurkat T-cell leukemia cell line with the universal apoptotic drug, camptothecin, resulted in identification of two Jurkat subpopulations: one that is sensitive to camptothecin and another that is rather intrinsically resistant. We sorted apoptotic Jurkat cells from nonapoptotic ones prior to profiling miRNAs through deep sequencing. Our data showed that a total of 184 miRNAs were dysregulated. Interestingly, the apoptotic and nonapoptotic subpopulations exhibited distinct miRNA expression profiles. In particular, 6 miRNAs were inversely expressed in these two subpopulations. The pyrosequencing results were validated by real-time qPCR. Altogether, these results suggest that miRNAs modulate apoptotic events in T cells and that cellular heterogeneity requires careful interpretation of miRNA expression profiles obtained from drug-treated cell lines.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA