Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Neurosci Methods ; 405: 110080, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38369027

RESUMO

BACKGROUND: The thalamic reuniens (Re) and rhomboid (Rh) nuclei are bidirectionally connected with the medial prefrontal cortex (mPFC) and the hippocampus (Hip). Fiber-sparing N-methyl-D-aspartate lesions of the ReRh disrupt cognitive functions, including persistence of certain memories. Because such lesions irremediably damage neurons interconnecting the ReRh with the mPFC and the Hip, it is impossible to know if one or both pathways contribute to memory persistence. Addressing such an issue requires selective, pathway-restricted and direction-specific disconnections. NEW METHOD: A recent method associates a retrograde adeno-associated virus (AAV) expressing Cre recombinase with an anterograde AAV expressing a Cre-dependent caspase, making such disconnection feasible by caspase-triggered apoptosis when both constructs meet intracellularly. We injected an AAVrg-Cre-GFP into the ReRh and an AAV5-taCasp into the mPFC. As expected, part of mPFC neurons died, but massive neurotoxicity of the AAVrg-Cre-GFP was found in ReRh, contrasting with normal density of DAPI staining. Other stainings demonstrated increasing density of reactive astrocytes and microglia in the neurodegeneration site. COMPARISON WITH EXISTING METHODS: Reducing the viral titer (by a 4-fold dilution) and injection volume (to half) attenuated toxicity substantially, still with evidence for partial disconnection between mPFC and ReRh. CONCLUSIONS: There is an imperative need to verify potential collateral damage inherent in this type of approach, which is likely to distort interpretation of experimental data. Therefore, controls allowing to distinguish collateral phenotypic effects from those linked to the desired disconnection is essential. It is also crucial to know for how long neurons expressing the Cre-GFP protein remain operational post-infection.


Assuntos
Dependovirus , Tálamo , Ratos , Animais , Dependovirus/genética , Tálamo/fisiologia , Núcleos da Linha Média do Tálamo/fisiologia , Hipocampo/fisiologia , Córtex Pré-Frontal/fisiologia , Neurônios , Caspases/farmacologia , Vias Neurais/fisiologia
2.
Prog Neurobiol ; 227: 102483, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37327984

RESUMO

Cytoplasmic mislocalization of the nuclear Fused in Sarcoma (FUS) protein is associated to amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Cytoplasmic FUS accumulation is recapitulated in the frontal cortex and spinal cord of heterozygous Fus∆NLS/+ mice. Yet, the mechanisms linking FUS mislocalization to hippocampal function and memory formation are still not characterized. Herein, we show that in these mice, the hippocampus paradoxically displays nuclear FUS accumulation. Multi-omic analyses showed that FUS binds to a set of genes characterized by the presence of an ETS/ELK-binding motifs, and involved in RNA metabolism, transcription, ribosome/mitochondria and chromatin organization. Importantly, hippocampal nuclei showed a decompaction of the neuronal chromatin at highly expressed genes and an inappropriate transcriptomic response was observed after spatial training of Fus∆NLS/+ mice. Furthermore, these mice lacked precision in a hippocampal-dependent spatial memory task and displayed decreased dendritic spine density. These studies shows that mutated FUS affects epigenetic regulation of the chromatin landscape in hippocampal neurons, which could participate in FTD/ALS pathogenic events. These data call for further investigation in the neurological phenotype of FUS-related diseases and open therapeutic strategies towards epigenetic drugs.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Animais , Camundongos , Esclerose Lateral Amiotrófica/genética , Cromatina/metabolismo , Epigênese Genética , Demência Frontotemporal/genética , Hipocampo/metabolismo , Mutação , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo
3.
Neurobiol Learn Mem ; 167: 107131, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31783128

RESUMO

Response and place memory systems have long been considered independent, encoding information in parallel, and involving the striatum and hippocampus, respectively. Most experimental studies supporting this view used simple, repetitive tasks, with unrestrained access to spatial cues. They did not give animals an opportunity to correct a response strategy by shifting to a place one, which would demonstrate dynamic, adaptive interactions between both memory systems in the navigation correction process. In a first experiment, rats were trained in the double-H maze for different durations (1, 6, or 14 days; 4 trials/day) to acquire a repetitive task in darkness (forcing a response memory-based strategy) or normal light (placing response and place memory systems in balance), or to acquire a place memory. All rats were given a misleading shifted-start probe trial 24-h post-training to test both their strategy and their ability to correct their navigation directly or in response to negative feedback. Additional analyses focused on the dorsal striatum and the dorsal hippocampus using c-Fos gene expression imaging and, in a second experiment, reversible muscimol inactivation. The results indicate that, depending on training protocol and duration, the striatum, which was unexpectedly the first to come into play in the dual strategy task, and the hippocampus are both required when rats have to correct their navigation after having acquired a repetitive task in a cued environment. Partly contradicting the model established by Packard and McGaugh (1996, Neurobiology of Learning and Memory, vol. 65), these data point to memory systems that interact in more complex ways than considered so far. To some extent, they also challenge the notion of hippocampus-independent response memory and striatum-independent place memory systems.


Assuntos
Hipocampo/fisiologia , Aprendizagem em Labirinto/fisiologia , Neostriado/fisiologia , Neurônios/fisiologia , Memória Espacial/fisiologia , Navegação Espacial/fisiologia , Animais , Sinais (Psicologia) , Masculino , Proteínas Proto-Oncogênicas c-fos/análise , Ratos Long-Evans
4.
Neurobiol Learn Mem ; 141: 108-123, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28392406

RESUMO

Lesions of the reuniens and rhomboid (ReRh) thalamic nuclei in rats do not alter spatial learning but shorten the period of memory persistence (Loureiro et al. 2012). Such persistence requires a hippocampo-cortical (prefrontal) dialog leading to memory consolidation at the systems level. Evidence for reciprocal connections with the hippocampus and the medial prefrontal cortex (mPFC) makes the ReRh a potential hub for regulating hippocampo-cortical interactions. As environmental enrichment (EE) fosters recovery of declarative-like memory functions after diencephalic lesions (e.g., anterior thalamus), we studied the possibility of triggering recovery of systems-level consolidation in ReRh lesioned rats using a 40-day postsurgical EE. Remote memory was tested 25days post-acquisition in a Morris water maze. The functional activity associated with retrieval was quantified using c-Fos imaging in the dorsal hippocampus, mPFC, intralaminar thalamic nuclei, and amygdala. EE enhanced remote memory in ReRh rats. Conversely, ReRh rats housed in standard conditions were impaired. C-Fos immunohistochemistry showed a higher recruitment of the mPFC in enriched vs. standard rats with ReRh lesions during retrieval. ReRh rats raised in standard conditions showed weaker c-Fos expression than their sham-operated counterparts. The reinstatement of memory capacity implicated an EE-triggered modification of functional connectivity: EE reduced a marked lesion-induced increase in baseline c-Fos expression in the amygdala. Thus, enriched housing conditions counteracted the negative impact of ReRh lesions on spatial memory persistence. These effects could be the EE-triggered consequence of an enhanced neuronal activation in the mPFC, along with an attenuation of a lesion-induced hyperactivity in the amygdala.


Assuntos
Meio Ambiente , Abrigo para Animais , Consolidação da Memória/fisiologia , Núcleos da Linha Média do Tálamo/fisiologia , Memória Espacial/fisiologia , Tonsila do Cerebelo/metabolismo , Animais , Hipocampo/metabolismo , Masculino , Aprendizagem em Labirinto/fisiologia , Atividade Motora/fisiologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Long-Evans
5.
Brain Struct Funct ; 221(1): 91-102, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25260556

RESUMO

Systems-level consolidation models propose that recent memories are initially hippocampus-dependent. When remote, they are partially or completely dependent upon the medial prefrontal cortex (mPFC). An implication of the mPFC in recent memory, however, is still debated. Different amounts of muscimol (MSCI 0, 30, 50, 80 and 250 ng in 1 µL PBS) were used to assess the impact of inactivation of the dorsal hippocampus (dHip) or the mPFC (targeting the prelimbic cortex) on a 24-h delayed retrieval of a platform location that rats had learned drug-free in a water maze. The two smallest amounts of MSCI (30 and 50 ng) did not affect recall, whatever the region. 80 ng MSCI infused into the dHip disrupted spatial memory retrieval, as did the larger amount. Infusion of MSCI into the mPFC did not alter performance in the 0-80 ng range. At 250 ng, it induced an as dramatic memory impairment as after efficient dHip inactivation. Stereological quantifications showed that 80 ng MSCI in the dHip and 250 ng MSCI in the mPFC induced a more than 80% reduction of c-Fos expression, suggesting that, beyond the amounts infused, it is the magnitude of the neuronal activity decrease which is determinant as to the functional outcome of the inactivation. Because, based on the literature, even 250 ng MSCI is a small amount, our results point to a contribution of the mPFC to the recall of a recently acquired spatial memory and thereby extend our knowledge about the functions of this major actor of cognition.


Assuntos
Hipocampo/fisiologia , Córtex Pré-Frontal/fisiologia , Memória Espacial/fisiologia , Animais , Agonistas de Receptores de GABA-A/administração & dosagem , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Rememoração Mental/efeitos dos fármacos , Rememoração Mental/fisiologia , Muscimol/administração & dosagem , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Long-Evans , Memória Espacial/efeitos dos fármacos
6.
J Neurosci ; 32(29): 9947-59, 2012 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-22815509

RESUMO

The formation of enduring declarative-like memories engages a dialog between the hippocampus and the prefrontal cortex (PFC). Electrophysiological and neuroanatomical evidence for reciprocal connections with both of these structures makes the reuniens and rhomboid nuclei (ReRh) of the thalamus a major functional link between the PFC and hippocampus. Using immediate early gene imaging (c-Fos), fiber-sparing excitotoxic lesion, and reversible inactivation in rats, we provide evidence demonstrating a contribution of the ReRh to the persistence of a spatial memory. Intact rats trained in a Morris water maze showed increased c-Fos expression (vs home cage and visible platform groups: >500%) in the ReRh when tested in a probe trial at a 25 d delay, against no change at a 5 d delay; behavioral performance was comparable at both delays. In rats subjected to excitotoxic fiber-sparing NMDA lesions circumscribed to the ReRh, we found normal acquisition of the water-maze task (vs sham-operated controls) and normal probe trial performance at the 5 d delay, but there was no evidence for memory retrieval at the 25 d delay. In rats having learned the water-maze task, lidocaine-induced inactivation of the ReRh right before the probe trial did not alter memory retrieval tested at the 5 d or 25 d delay. Together, these data suggest an implication of the ReRh in the long-term consolidation of a spatial memory at the system level. These nuclei could then be a key structure contributing to the transformation of a new hippocampal-dependent spatial memory into a remote one also depending on cortical networks.


Assuntos
Aprendizagem em Labirinto/fisiologia , Memória/fisiologia , Núcleos da Linha Média do Tálamo/fisiopatologia , Neurônios/fisiologia , Comportamento Espacial/fisiologia , Animais , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Memória/efeitos dos fármacos , Núcleos da Linha Média do Tálamo/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , N-Metilaspartato/toxicidade , Neurônios/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Long-Evans , Comportamento Espacial/efeitos dos fármacos
7.
Hippocampus ; 22(4): 827-41, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21542054

RESUMO

According to systems consolidation, as hippocampal-dependent memories mature over time, they become additionally (or exclusively) dependent on extra-hippocampal structures. We assessed the recruitment of hippocampal and cortical structures on remote memory retrieval in a performance-degradation resistant (PDR; no performance degradation with time) versus performance-degradation prone (PDP; performance degraded with time) context. Using a water-maze task in two contexts with a hidden platform and three control conditions (home cage, visible platform with or without access to distal cues), we compared neuronal activation (c-Fos imaging) patterns in the dorsal hippocampus and the medial prefrontal cortex (mPFC) after the retrieval of recent (5 days) versus remote (25 days) spatial memory. In the PDR context, the hippocampus exhibited greater c-Fos protein expression on remote than recent memory retrieval, be it in the visible or hidden platform group. In the PDP context, hippocampal activation increased at the remote time point and only in the hidden platform group. In the anterior cingulate cortex, c-Fos expression was greater for remote than for recent memory retrieval and only in the PDR context. The necessity of the mPFC for remote memory retrieval in the PDR context was confirmed using region-specific lidocaine inactivation, which had no impact on recent memory. Conversely, inactivation of the dorsal hippocampus impaired both recent and remote memory in the PDR context, and only recent memory in the PDP context, in which remote memory performance was degraded. While confirming that neuronal circuits supporting spatial memory consolidation are reorganized in a time-dependent manner, our findings further indicate that mPFC and hippocampus recruitment (i) depends on the content and perhaps the strength of the memory and (ii) may be influenced by the environmental conditions (e.g., cue saliency, complexity) in which memories are initially formed and subsequently recalled.


Assuntos
Hipocampo/fisiologia , Memória de Longo Prazo/fisiologia , Córtex Pré-Frontal/fisiologia , Animais , Hipocampo/efeitos dos fármacos , Lidocaína/administração & dosagem , Masculino , Aprendizagem em Labirinto/fisiologia , Memória de Longo Prazo/efeitos dos fármacos , Rememoração Mental/fisiologia , Córtex Pré-Frontal/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Long-Evans , Recrutamento Neurofisiológico/fisiologia , Fatores de Tempo
8.
Psychopharmacology (Berl) ; 214(2): 437-54, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20959966

RESUMO

INTRODUCTION: In rats, activation of medial septum (MS) 5-HT(1A) receptors with the 5-HT(1A)/5-HT(7) receptor agonist 8-OH-DPAT disrupts encoding and consolidation, but not retrieval of a spatial memory in the water maze task. These findings might be explained by an action of 8-OH-DPAT on 5-HT(1A) receptors located on cholinergic neurons which the drug could transiently hyperpolarise. If so, selective damage of these neurons should mimic the effects of 8-OH-DPAT, or, at least, synergistically interfere with them. METHODS: To test this hypothesis, rats were subjected to intraseptal infusions of 8-OH-DPAT (or phosphate-buffered saline) during acquisition of a water maze task before and/or after 192 IgG-saporin-induced MS cholinergic lesion (vs. sham-operated). RESULTS: We confirmed that only pre-acquisition intraseptal 8-OH-DPAT infusions prevented learning and subsequent drug-free retrieval of the platform location in intact rats and found that (1) the cholinergic lesion did not prevent recall of the platform location, and (2) the impairing effects of 8-OH-DPAT were similar in sham-operated and lesioned rats, whether naïve or not, to the task before lesion surgery. CONCLUSIONS: An action of 8-OH-DPAT on only MS cholinergic neurons is not sufficient to account for the drug-induced memory impairments. A concomitant 8-OH-DPAT-induced hyperpolarisation of cholinergic and/or GABAergic and/or glutamatergic neurons (intact rats), or of only GABAergic and/or glutamatergic ones after cholinergic lesion, might be necessary to obliterate task acquisition, confirming that, in the MS, (1) the three neuronal populations could cooperate to process hippocampal-dependent information, and (2) non-cholinergic septohippocampal neurons might be more important than cholinergic ones in serotonin-induced modulation of hippocampus-dependent memory processing.


Assuntos
Comportamento Animal , Hipocampo/metabolismo , Memória , Neurônios/metabolismo , Receptor 5-HT1A de Serotonina/metabolismo , Núcleos Septais/metabolismo , 8-Hidroxi-2-(di-n-propilamino)tetralina/administração & dosagem , Acetilcolina/metabolismo , Animais , Anticorpos Monoclonais/administração & dosagem , Comportamento Animal/efeitos dos fármacos , Fibras Colinérgicas/efeitos dos fármacos , Fibras Colinérgicas/metabolismo , Sinais (Psicologia) , Denervação/métodos , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Infusões Parenterais , Masculino , Aprendizagem em Labirinto , Memória/efeitos dos fármacos , Atividade Motora , Neurônios/efeitos dos fármacos , Ratos , Ratos Long-Evans , Receptor 5-HT1A de Serotonina/efeitos dos fármacos , Proteínas Inativadoras de Ribossomos Tipo 1/administração & dosagem , Saporinas , Núcleos Septais/citologia , Núcleos Septais/efeitos dos fármacos , Agonistas do Receptor de Serotonina/administração & dosagem
9.
Behav Brain Res ; 161(2): 229-37, 2005 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-15922049

RESUMO

We first verified that our 12-arm radial maze test enabled demonstration of memory deficits in rats treated with the muscarinic antagonist scopolamine hydrobromide (0.5mg/kg, i.p.). We then investigated whether a systemically-injected quaternary-ammonium derivate of this antagonist (scopolamine methylbromide; MBR), which poorly crosses the blood-brain barrier (BBB), altered maze performance after a 45-min exposure to 2.45 GHz electromagnetic field (EMF; 2 micros pulse width, 500 pps, whole-body specific energy absorption rate [SAR] of 2.0 W/kg, +/-2dB and brain averaged SAR of 3.0 W/kg, +/-3 dB); if observed, such an alteration would reflect changes in BBB permeability. The drug was injected before or after exposure. Controls were naive rats (no experience of the exposure device) and sham-exposed rats (experience of the exposure device without microwaves). In a final approach, rats were subjected to i.v. injections of Evans blue, a dye binding serum albumin, before or after EMF exposure. Whether scopolamine MBR was injected before or after exposure, the exposed rats did not perform differently from their naive or sham-exposed counterparts. Thus, EMFs most probably failed to disrupt the BBB. This conclusion was further supported by the absence of Evans blue extravasation into the brain parenchyma of our exposed rats.


Assuntos
Barreira Hematoencefálica/efeitos da radiação , Memória de Curto Prazo/efeitos dos fármacos , Memória de Curto Prazo/efeitos da radiação , Micro-Ondas , N-Metilescopolamina/farmacologia , Parassimpatolíticos/farmacologia , Albuminas/metabolismo , Análise de Variância , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/efeitos da radiação , Barreira Hematoencefálica/fisiologia , Lesões Encefálicas/etiologia , Lesões Encefálicas/patologia , Esquema de Medicação , Campos Eletromagnéticos , Azul Evans/metabolismo , Lateralidade Funcional , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/efeitos da radiação , Ratos , Ratos Sprague-Dawley , Fatores de Tempo , Irradiação Corporal Total/métodos
10.
Behav Brain Res ; 161(2): 331-4, 2005 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-15922061

RESUMO

Lai et al. [Lai H, Horita A, Guy AW. Microwave irradiation affects radial-arm maze performance in the rat. Bioelectromagnetics 1994;15(2):95-104] reported that exposure of rats to pulsed 2.45 GHz microwaves altered maze performance. Their maze was bordered by 20 cm high opaque walls. Using a maze test based on unrestrained access to spatial cues (no walls), we could not replicate this result [Cassel JC, Cosquer B, Galani R, Kuster N. Whole-body exposure to 2.45 GHz electromagnetic fields does not alter radial-maze performance in rats. Behav Brain Res 2004;155:37-43]. Here, we attempted another replication using a maze apparatus bordered by 30 cm high opaque walls. Performance of exposed rats was normal. These results show that microwave exposure as used herein does not alter spatial working memory, when access to spatial cues is reduced.


Assuntos
Campos Eletromagnéticos , Aprendizagem em Labirinto/efeitos da radiação , Comportamento Espacial/efeitos da radiação , Irradiação Corporal Total/métodos , Análise de Variância , Animais , Comportamento Animal/efeitos da radiação , Masculino , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
11.
Behav Brain Res ; 156(1): 65-74, 2005 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-15474651

RESUMO

In a first phase of this investigation, a validation of our elevated plus-maze apparatus was performed in male Sprague-Dawley rats by testing anxiety response at various ambient light intensities (200, 30, 10 and 2.5 lux), as well as the effects of diazepam treatment (0.5 and 1.0 mg/kg, i.p. at 30 lux). Anxiety responses were found to decrease with decreasing light intensity and to be attenuated by diazepam treatment. Subsequently, a separate set of rats was exposed to 2.45 GHz EMFs (2 micros pulse width, 500 pulses per second, whole-body and time averaged of SAR 0.6 W/kg +/-2 dB, brain-averaged SAR of 0.9 W/kg +/-3 dB) for 45 min to assess whether EMF exposure altered anxiety responses in the same apparatus. As we made no a priori hypothesis on whether the effects would be anxiogenic or anxiolytic, part of the rats were tested under an ambient light intensity of 2.5 lux, the other one being tested at 30 lux. The low intensity level set the behavioural baseline for the detection of anxiogenic effects, while the higher one corresponded to the detection of anxiolytic effects. Sham-exposed and naive rats were used as controls. Whatever light intensity was used, EMF exposure failed to induce any significant effect on anxiety responses in the plus maze. The present experiment demonstrates that exposure to EMFs, which was previously found to increase the number of benzodiazepine receptors in the rat cortex [Lai H, Carino MA, Horita A, Guy AW. Single vs. repeated microwave exposure: effects on benzodiazepine receptors in the brain of the rat. Bioelectromagnetics 1992;13(1):57-66], does not alter anxiety responses assessed in the elevated plus maze.


Assuntos
Ansiedade/psicologia , Nível de Alerta/efeitos da radiação , Campos Eletromagnéticos/efeitos adversos , Medo/efeitos da radiação , Aprendizagem em Labirinto/efeitos da radiação , Animais , Nível de Alerta/efeitos dos fármacos , Benzodiazepinas/farmacologia , Diazepam/farmacologia , Relação Dose-Resposta a Droga , Relação Dose-Resposta à Radiação , Medo/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Irradiação Corporal Total
12.
Brain Res Bull ; 64(5): 381-94, 2005 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-15607826

RESUMO

Recent studies suggested that the cholinergic innervation of the hippocampus is not crucial for spatial learning, but it might be important for other forms of learning. This study assessed the effects of partial immunotoxic cholinergic lesions in the medial septum and concurrent scopolamine challenge in a complex learning task, the Hebb-Williams maze. Long-Evans rats were given intraseptal injections of 192 IgG-saporin (SAPO). Rats injected with phosphate-buffered saline (PBS) served as controls. Starting 25 days after surgery, behavioural performance was assessed in the Hebb-Williams maze test without prior or after injection of scopolamine (0.17 or 0.5 mg/kg, i.p.). In SAPO rats, histochemical analysis showed a 40-45% decrease in the density of hippocampal AChE staining. The number of ChAT-positive cell bodies in the medial septum was also significantly decreased (-56%) and there was a non-significant reduction of the number of parvalbumine-positive neurons. The behavioural results demonstrated that the lesions induced small but significant learning deficits. At 0.17 mg/kg, scopolamine produced more impairments in SAPO rats than in PBS-injected rats, suggesting an additive effect between the partial lesion and the drug. These observations indicate that the Hebb-Williams test may be more sensitive to alterations of septohippocampal cholinergic function, than radial- or water-maze tasks. They also show that subtle learning deficits can be detected after partial lesions of the cholinergic septohippocampal pathways. Finally, the data from the scopolamine challenge are in keeping with clinical results showing higher sensitivity to muscarinic blockade in aged subjects in whom weaker cholinergic functions can be presumed.


Assuntos
Acetilcolina/metabolismo , Hipocampo/efeitos dos fármacos , Imunotoxinas/toxicidade , Aprendizagem em Labirinto/efeitos dos fármacos , Antagonistas Muscarínicos/farmacologia , Escopolamina/farmacologia , Análise de Variância , Animais , Anticorpos Monoclonais/toxicidade , Comportamento Animal , Contagem de Células/métodos , Colina O-Acetiltransferase/metabolismo , Feixe Diagonal de Broca/metabolismo , Relação Dose-Resposta a Droga , Interações Medicamentosas , Lateralidade Funcional , Hipocampo/lesões , Imuno-Histoquímica/métodos , Masculino , Aprendizagem em Labirinto/fisiologia , N-Glicosil Hidrolases , Parvalbuminas/metabolismo , Ratos , Ratos Long-Evans , Proteínas Inativadoras de Ribossomos Tipo 1 , Saporinas , Septo Pelúcido/metabolismo , Percepção Espacial/efeitos dos fármacos , Percepção Espacial/fisiologia
13.
Brain Res ; 1029(2): 259-71, 2004 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-15542081

RESUMO

Lesions of basal forebrain cholinergic neurons by intracerebroventricular (i.c.v.) injections of 192 IgG-saporin increased the locomotor response to 0.5 and 1.5 mg/kg of D-amphetamine in adult rats [A. Mattsson, S.O. Ogren, L. Olson, Facilitation of dopamine_mediated locomotor activity in adult rats following cholinergic denervation, Exp Neurol. 174 (2002) 96-108.]. In the present study, adult male rats were subjected to bilateral injections of 192 IgG-saporin either into the septum (Sp), the nucleus basalis magnocellularis (Nbm), both structures (SpNbm) or i.c.v. Locomotor activity was assessed in the home cage 23 days after surgery, and, subsequently, thrice after an intraperitoneal injection of D-amphetamine (1 mg/kg) and twice after an injection of cocaine (15 mg/kg). Analysis of AChE-stained material showed that Sp lesions induced preferentially hippocampal denervation, Nbm lesions induced preferentially cortical denervation, while both SpNbm and i.c.v. lesions deprived the hippocampus and the cortex of almost all AChE-positive reaction products. The spontaneous and drug-induced locomotor activity of all lesioned rats did not differ significantly from that of control rats, except in rats subjected to i.c.v. injections, in which the locomotor response was significantly increased after the second administration of cocaine. In addition, in Nbm and SpNbm rats, the locomotor reaction to cocaine was weaker right after the second injection. The present results do not confirm the report by Mattsson et al. on the potentiation of amphetamine-induced locomotion by i.c.v. injections of 192 IgG-saporin, but suggest that cocaine-induced locomotion can be increased by such lesions and, to some respect, attenuated by cholinergic damage in the Nbm.


Assuntos
Anfetamina/farmacologia , Estimulantes do Sistema Nervoso Central/farmacologia , Cocaína/farmacologia , Inibidores da Captação de Dopamina/farmacologia , Hipercinese/induzido quimicamente , Prosencéfalo/efeitos dos fármacos , Acetilcolinesterase/metabolismo , Animais , Anticorpos Monoclonais , Núcleo Basal de Meynert/efeitos dos fármacos , Núcleo Basal de Meynert/patologia , Colinérgicos , Denervação , Interações Medicamentosas , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Hipercinese/fisiopatologia , Imunotoxinas , Injeções Intraventriculares , Masculino , Microinjeções , N-Glicosil Hidrolases , Prosencéfalo/patologia , Ratos , Ratos Long-Evans , Proteínas Inativadoras de Ribossomos Tipo 1 , Saporinas , Septo do Cérebro/efeitos dos fármacos , Septo do Cérebro/patologia
14.
Behav Brain Res ; 155(1): 37-43, 2004 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-15325777

RESUMO

Mobile communication is based on utilization of electromagnetic fields (EMFs) in the frequency range of 0.3-300 GHz. Human and animal studies suggest that EMFs, which are in the 0.1 MHz-300 GHz range, might interfere with cognitive processes. In 1994, a report by Lai et al. [Bioelectromagnetics 15 (1994) 95-104] showed that whole-body exposure of rats to pulsed 2.45 GHz microwaves (2 micros pulse width, 500 pps, and specific absorption rate [SAR] 0.6 W/kg) for 45 min resulted in altered spatial working memory assessed in a 12-arm radial-maze task. Surprisingly, there has been only one attempt to replicate this experiment so far [Bioelectromagnetics 25 (2004) 49-57]; confirmation of the Lai et al. experiment failed. In the present study, rats were tested in a 12-arm radial-maze subsequently to a daily exposure to 2.45 GHz microwaves (2 micros pulse width, 500 pps, and SAR 0.6 W/kg) for 45 min. The performance of exposed rats was comparable to that found in sham-exposed or in naive rats (no contact with the exposure system). Regarding the methodological details provided by Lai et al. on their testing protocol, our results might suggest that the microwave-induced behavioral alterations measured by these authors might have had more to do with factors liable to performance bias than with spatial working memory per se.


Assuntos
Campos Eletromagnéticos , Aprendizagem em Labirinto/efeitos da radiação , Irradiação Corporal Total/métodos , Análise de Variância , Animais , Masculino , Micro-Ondas/efeitos adversos , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA