Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Pathol ; 189(3): 665-676, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30553833

RESUMO

Bone morphogenetic proteins (BMPs) are secreted proteins that belong to the transforming growth factor-ß superfamily. In the adult brain, they modulate neurogenesis, favor astrogliogenesis, and inhibit oligodendrogenesis. Because BMPs may be involved in the failure of remyelination in multiple sclerosis (MS), we characterized the expression of BMP-2, BMP-4, BMP-5, and BMP-7; BMP type II receptor (BMPRII); and phosphorylated SMAD (pSMAD) 1/5/8 in lesions of MS and other demyelinating diseases. A total of 42 MS lesions, 12 acute ischemic lesions, 8 progressive multifocal leukoencephalopathy lesions, and 10 central nervous system areas from four nonneuropathological patients were included. Lesions were histologically classified according to the inflammatory activity. The expression of BMP-2, BMP-4, BMP-5, BMP-7, BMPRII, and pSMAD1/5/8 was quantified by immunostaining, and colocalization studies were performed. In MS lesions, astrocytes, microglia/macrophages, and neurons expressed BMP-2, BMP-4, BMP-5, and BMP-7; BMPRII; and pSMAD1/5/8. Oligodendrocytes expressed BMP-2 and BMP-7 and pSMAD1/5/8. The percentage of cells that expressed BMPs, BMPRII, and pSMAD1/5/8 correlated with the inflammatory activity of MS lesions, and changes in the percentage of positive cells were more relevant in MS than in other white matter-damaging diseases. These data indicate that BMPs are increased in active MS lesions, suggesting a possible role in MS pathogenesis.


Assuntos
Astrócitos/metabolismo , Proteínas Morfogenéticas Ósseas/biossíntese , Regulação da Expressão Gênica , Esclerose Múltipla/metabolismo , Oligodendroglia/metabolismo , Substância Branca/metabolismo , Astrócitos/patologia , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Feminino , Humanos , Leucoencefalopatia Multifocal Progressiva/metabolismo , Leucoencefalopatia Multifocal Progressiva/patologia , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/patologia , Oligodendroglia/patologia , Proteínas Smad/metabolismo , Substância Branca/fisiologia
2.
J Neuroinflammation ; 15(1): 296, 2018 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-30367633

RESUMO

BACKGROUND: Recent studies in experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis (MS), suggest an involvement of the histone methyltransferase enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2) in important processes such as cell adhesion and migration. METHODS: Here, we aimed to expand these initial observations by investigating the role of EZH2 in MS. mRNA expression levels for EZH2 were measured by real-time PCR in peripheral blood mononuclear cells (PBMC) from 121 MS patients (62 untreated and 59 receiving treatment) and 24 healthy controls. RESULTS: EZH2 expression levels were decreased in PBMC from untreated patients compared to that from controls, and treatment significantly upregulated EZH2 expression. Expression of miR-124 was increased in MS patients compared to controls. Blood immunophenotyping revealed EZH2 expression mostly restricted to CD4+ and CD8+ T cells, and circulating EZH2+ CD4+ and CD8+ T cells were decreased in untreated MS patients compared to controls. CD8+ T cells expressing EZH2 exhibited a predominant central memory phenotype, whereas EZH2+ CD4+ T cells were of effector memory nature, and both T cell subsets produced TNF-α. EZH2+ T cells were enriched in the cerebrospinal fluid compartment compared to blood and were found in chronic active lesions from MS patients. EZH2 inhibition and microarray analysis in PBMC was associated with significant downregulation of key T cell adhesion molecules. CONCLUSION: These findings suggest a role of EZH2 in the migration of T cells in MS patients. The observation of TNF-α expression by CD4+ and CD8+ T cells expressing EZH2 warrants additional studies to explore more in depth the pathogenic potential of EZH2+-positive cells in MS.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Leucócitos Mononucleares/metabolismo , Esclerose Múltipla Crônica Progressiva/patologia , Esclerose Múltipla Recidivante-Remitente/patologia , Adulto , Animais , Estudos de Coortes , Citocinas/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/etiologia , Encefalomielite Autoimune Experimental/patologia , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Feminino , Adjuvante de Freund/toxicidade , Humanos , Leucócitos Mononucleares/classificação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Esclerose Múltipla Crônica Progressiva/imunologia , Esclerose Múltipla Recidivante-Remitente/imunologia , Glicoproteína Mielina-Oligodendrócito/toxicidade , Fragmentos de Peptídeos/toxicidade , Proteínas Proto-Oncogênicas c-vav/genética , Proteínas Proto-Oncogênicas c-vav/metabolismo , Subpopulações de Linfócitos T , Talina/genética , Talina/metabolismo , Adulto Jovem
3.
Neurotherapeutics ; 14(4): 1095-1106, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28593439

RESUMO

The role of the T helper (Th)17 pathway has been clearly demonstrated in the onset and progression of autoimmune diseases, where interleukin (IL)-23 is a key molecule in maintaining the response mediated by Th17 cells. As a consequence, recent strategies based on blocking the interaction between IL-23 and its receptor (IL-23R), for example the anti-p19 antibody tildrakizumab, have been developed to regulate the Th17 pathway from the initial stages of the disease. Here, a soluble (s)IL-23R cDNA was cloned in expression plasmids and viral vectors. The clinical efficacy of sIL-23R was evaluated in myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis mice intravenously injected with a single dose of adeno-associated virus AAV8-sIL-23R vectors. Cytokine secretion was determined by multiplex assay, while histopathological analysis of the central nervous system was performed to study demyelination, inflammatory infiltration, and microglia and astroglia activation. We observed that administration of adeno-associated vector 8 encoding sIL-23R was associated with a significant disease improvement, including delay in the onset of the clinical signs; slower progress of the disease; interference with IL-23-mediated signal transducer and activator of transcription response by inhibiting of signal transducer and activator of transcription 3 phosphorylation; reduced demyelination and infiltration in the central nervous system; and lower astrocyte and microglia activation. Our results suggest that the use of vectors carrying sIL-23R to block the IL-23/IL-23R interaction may be a new therapeutic strategy for the treatment of multiple sclerosis.


Assuntos
Encefalomielite Autoimune Experimental/patologia , Encefalomielite Autoimune Experimental/terapia , Vetores Genéticos/administração & dosagem , Esclerose Múltipla/terapia , Receptores de Interleucina/metabolismo , Animais , Astrócitos/metabolismo , Dependovirus/genética , Encefalomielite Autoimune Experimental/metabolismo , Feminino , Terapia Genética , Vetores Genéticos/genética , Células HEK293 , Humanos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Mielite/patologia , Receptores de Interleucina/genética , Transdução de Sinais , Medula Espinal/patologia , Células Th17/metabolismo
4.
Exp Neurol ; 286: 50-60, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27693617

RESUMO

Previous work by our group showed that transferring bone marrow cells transduced with a self-antigen induced immune tolerance and ameliorated experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis (MS). We also found that following retroviral transduction of murine bone marrow (BM) cells, the majority of cells generated and transduced were myeloid-derived suppressor cells (MDSCs). Here, we aimed to determine whether purified antigen-expressing MDSCs have similar therapeutic effects than those of unfractionated BM, and to investigate their potential mechanisms. We performed phenotypic and functional analyses in these cells using the same animal model, and we used purified antigen-expressing MDSCs in preventive and therapeutic approaches. These cells exerted therapeutic effects similar to those of BM cells, which depended upon self-antigen expression. The majority of monocytic (M)-MDSCs expressed the immunosuppressive molecule programmed death ligand-1 (PD-L1), CD80, CD86 and MHC class II molecules. Additionally, the animals infused with antigen-expressing cells exhibited lower percentages of activated T cells and higher percentages of B cells with a regulatory phenotype (B220+CD1dhigh CD5+) in the spleen than their respective controls. MDSCs expressing self-antigens, alloantigens or therapeutic transgenes are tolerogenic and can be exploited therapeutically in autoimmune diseases, transplantation and in gene therapy, respectively.


Assuntos
Autoantígenos/uso terapêutico , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/terapia , Células Supressoras Mieloides/fisiologia , Transferência Adotiva , Animais , Apoptose/fisiologia , Células da Medula Óssea/fisiologia , Sistema Nervoso Central/patologia , Citocinas/metabolismo , Encefalomielite Autoimune Experimental/patologia , Encefalomielite Autoimune Experimental/fisiopatologia , Feminino , Humanos , Interferon gama/farmacologia , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Células Supressoras Mieloides/efeitos dos fármacos , Retroviridae/genética , Índice de Gravidade de Doença , Baço/patologia , Canais de Ânion Dependentes de Voltagem
5.
Hum Gene Ther ; 27(9): 656-67, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27004974

RESUMO

Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is a metabolic disorder caused by mutations in TYMP, encoding thymidine phosphorylase (TP). In MNGIE patients, TP dysfunction produces systemic thymidine and deoxyuridine accumulation, which ultimately impairs mitochondrial DNA replication and results in mitochondrial dysfunction. To date, only allogeneic hematopoietic stem cell transplantation has demonstrated long-term clinical efficacy, but high morbidity and mortality associated with this procedure necessitate the search for safer alternatives. In a previous study, we demonstrated that hematopoietic stem cell gene therapy using a lentiviral vector containing the coding sequence of TYMP restored the biochemical homeostasis in an animal model of MNGIE. In the present follow-up study, we show that ectopic expression of TP in the hematopoietic system restores normal nucleoside levels in plasma, as well as in tissues affected in MNGIE such as small intestine, skeletal muscle, brain, and liver. Mitochondrial dNTP pool imbalances observed in liver of the animal model were also corrected by the treatment. The biochemical effects were maintained at least 20 months even with low levels of chimerism. No alterations in the blood cell counts or other toxic effects were observed in association with the lentiviral transduction or TP overexpression. These results further support the notion that gene therapy is a feasible treatment option for MNGIE.


Assuntos
Terapia Genética , Vetores Genéticos/administração & dosagem , Transplante de Células-Tronco Hematopoéticas , Pseudo-Obstrução Intestinal/terapia , Lentivirus/genética , Encefalomiopatias Mitocondriais/terapia , Nucleosídeos/metabolismo , Timidina Fosforilase/genética , Animais , Terapia Combinada , Modelos Animais de Doenças , Feminino , Homeostase , Pseudo-Obstrução Intestinal/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Encefalomiopatias Mitocondriais/genética , Distrofia Muscular Oculofaríngea , Oftalmoplegia/congênito
7.
Med Clin (Barc) ; 139(5): 208-14, 2012 Jul 21.
Artigo em Espanhol | MEDLINE | ID: mdl-22361347

RESUMO

Therapeutic strategies based on stem cells are being increasingly used to treat a wide range of neurological diseases. Although these strategies were initially designed to replace dead cells in injured tissue, the potential of stem cells to migrate, secrete trophic factors, and immunomodulate allows their therapeutic use as a vehicle for gene therapy, as in Parkinson's disease, or as immunomodulators and neuroprotectors in diseases such as multiple sclerosis. This review will focus on current clinical and experimental evidence on the treatment of neurological disorders with strategies based on stem cells.


Assuntos
Doenças do Sistema Nervoso/terapia , Transplante de Células-Tronco/métodos , Doença de Alzheimer/terapia , Humanos , Doença de Huntington/terapia , Esclerose Múltipla/terapia , Neoplasias do Sistema Nervoso/terapia , Doenças Neurodegenerativas/terapia , Doença de Parkinson/terapia , Acidente Vascular Cerebral/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA