Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 13: 1025359, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36743305

RESUMO

Current therapeutic ways adopted for the treatment of leishmaniasis are toxic and expensive including parasite resistance is a growing problem. Given this scenario, it is urgent to explore treatment alternatives for leishmaniasis. The aim of this study was to evaluate the effect of 3-phenyl-lawsone (3-PL) naphthoquinone on Leishmania (Viannia) braziliensis infection, both in vitro and in vivo, using two local routes of administration: subcutaneous (higher dose) and tattoo (lower dose). In vitro 3-PL showed low toxicity for macrophages (CC50 >3200 µM/48h) and activity against intracellular amastigotes (IC50 = 193 ± 19 µM/48h) and promastigotes (IC50 = 116 ± 26 µM/72h), in which induced increased ROS generation. Additionally, 3-PL up-regulated the production of cytokines such as tumor necrosis factor alpha (TNF-α), monocyte chemotactic protein 1 (MCP-1), interleukin-6 (IL-6) and IL-10 in infected macrophages. However, the anti-amastigote action was independent of nitric oxide production. Treatment of hamsters infected with L. (V.) braziliensis from one week after infection with 3-PL by subcutaneous (25 µg/Kg) or tattooing (2.5 µg/Kg) route, during 3 weeks (3 times/week) or 2 weeks (2 times/week) significantly decreased the parasite load (p<0.001) in the lesion. The reduction of parasite load by 3-PL treatment was comparable to reference drug meglumine antimoniate administered by the same routes (subcutaneous 1mg/Kg and tattoo 0.1mg/Kg). In addition, treatment started from five weeks after infection with 3-PL per tattoo also decreased the parasite load. These results show the anti-leishmanial effect of 3-PL against L. (V.) braziliensis and its efficacy by subcutaneous (higher dose) and tattoo (lower dose) routes. In addition, this study shows that drug delivery by tattooing the lesion allows the use of lower doses than the conventional subcutaneous route, which may support the development of a new therapeutic strategy that can be adopted for leishmaniasis.


Assuntos
Antiprotozoários , Leishmania braziliensis , Leishmaniose Cutânea , Naftoquinonas , Tatuagem , Cricetinae , Animais , Antimoniato de Meglumina/farmacologia , Antimoniato de Meglumina/uso terapêutico , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Leishmaniose Cutânea/tratamento farmacológico , Leishmaniose Cutânea/parasitologia , Naftoquinonas/farmacologia , Naftoquinonas/uso terapêutico , Carga Parasitária
2.
Anticancer Res ; 43(1): 359-367, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36585169

RESUMO

BACKGROUND/AIM: Prostate cancer (PCa) is one of the most common malignancies in adult men. LQB-118 is a pterocarpanquinone with antitumor activity toward prostate cancer cells. It inhibits cell proliferation by down-regulating cyclins D1 and B1 and up-regulating p21. However, the effects of LQB-118 on PCa cell migration are still unclear. Herein, the LQB-118 effects on PCa metastatic cell migration/invasion and its mechanism of action were evaluated. MATERIALS AND METHODS: PC3 cells were treated with LQB-118 or Paclitaxel (PTX), and cell migration (wound healing and Boyden chamber assays) and invasion (matrigel assay) were determined. The LQB-118 mechanisms were evaluated by αVßIII protein expression (flow cytometry), protein phosphorylation (Western blot), and mRNA expression (qPCR). RESULTS: LQB-118 impaired PCa cell migration and invasion, down-regulated Akt phosphorylation, and also reduced GSK3ß phosphorylation, through a FAK-independent pathway. Also, it was observed that LQB-118 controlled the invasiveness behavior by reducing matrix metalloproteinase-9 (MMP-9) and up-regulating reversion-inducing cysteine rich protein with Kazal motifs (Reck) mRNA levels. Interestingly, LQB-118 increased integrin αvßIII expression, but this effect was not related to its activation, since the cell adhesion ability was reduced after LQB-118 treatment. CONCLUSION: These data highlight novel LQB-118 mechanisms in prostate cancer cells. LQB-118 acts as a negative regulator of the Akt/GSK3 signaling pathway and can modulate PCa cell proliferation, death, and migration/invasion. The results also support the use of LQB-118 for the treatment of metastatic PCa, alone or combined with another chemotherapeutic agent, due to its demonstrated pleiotropic activities.


Assuntos
Metaloproteinase 9 da Matriz , Neoplasias da Próstata , Humanos , Masculino , Linhagem Celular Tumoral/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Expressão Gênica , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/farmacologia , Quinase 3 da Glicogênio Sintase/uso terapêutico , Glicogênio Sintase Quinase 3 beta/efeitos dos fármacos , Glicogênio Sintase Quinase 3 beta/metabolismo , Proteínas Ligadas por GPI/efeitos dos fármacos , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Metaloproteinase 9 da Matriz/efeitos dos fármacos , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Invasividade Neoplásica , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro
3.
Int Immunopharmacol ; 83: 106399, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32193104

RESUMO

LQB 118, a hydride molecule, has been described as an antineoplastic and antiparasitic drug. Recently, LQB118 was also shown to display anti-inflammatory properties using an LPS-induced lung inflammation model. However, LQB 118 effects on the inflammatory response induced by zymosan has not been demonstrated. In this study, swiss mice were LQB 118 intraperitoneally (i.p.) treated and zymosan was used to induce peritoneal inflammation. Peritoneal fluid was collected and used for cell counting and proinflammatory cytokines quantification (IL-1ß, IL-6, and TNF-α) by immunoenzymatic assay (ELISA). For in vitro studies, peritoneal macrophages zymosan-stimulated were used. Results demonstrated that LQB 118 treatment reduced polymorphonuclear cell migration and TNF-α, IL-1ß, and IL-6 levels in the peritoneal cavity. In macrophages, LQB 118 treatment display no cytotoxic effect and is also able to reduce cytokines levels. To investigate LQB 118 putative mechanism of action, TLR2, CD69, and P-p38 MAPK expression were evaluated. LQB 118 treatment reduced CD69 expression and p38 phosphorylation induced by zymosan. Furthermore, LQB 118 was able to negatively modulate TLR2 expression in the presence of inflammatory stimulus. Thus, our study provide new evidences for the mechanisms related to the anti-inflammatory effect of LQB 118 in vivo and in vitro.


Assuntos
Anti-Inflamatórios/uso terapêutico , Antineoplásicos/uso terapêutico , Inflamação/tratamento farmacológico , Macrófagos/imunologia , Naftoquinonas/uso terapêutico , Peritônio/imunologia , Peritonite/tratamento farmacológico , Pterocarpanos/uso terapêutico , Animais , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Mediadores da Inflamação/metabolismo , Camundongos , Zimosan/imunologia
4.
Int J Mol Sci ; 20(20)2019 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-31614718

RESUMO

Drug resistance represents a major issue in treating breast cancer, despite the identification of novel therapeutic strategies, biomarkers, and subgroups. We have previously identified the LQB-223, 11a-N-Tosyl-5-deoxi-pterocarpan, as a promising compound in sensitizing doxorubicin-resistant breast cancer cells, with little toxicity to non-neoplastic cells. Here, we investigated the mechanisms underlying LQB-223 antitumor effects in 2D and 3D models of breast cancer. MCF-7 and MDA-MB-231 cells had migration and motility profile assessed by wound-healing and phagokinetic track motility assays, respectively. Cytotoxicity in 3D conformation was evaluated by measuring spheroid size and performing acid phosphatase and gelatin migration assays. Protein expression was analyzed by immunoblotting. Our results show that LQB-223, but not doxorubicin treatment, suppressed the migratory and motility capacity of breast cancer cells. In 3D conformation, LQB-223 remarkably decreased cell viability, as well as reduced 3D culture size and migration. Mechanistically, LQB-223-mediated anticancer effects involved decreased proteins levels of XIAP, c-IAP1, and Mcl-1 chemoresistance-related proteins, but not survivin. Survivin knockdown partially potentiated LQB-223-induced cytotoxicity. Additionally, cell treatment with LQB-223 resulted in changes in the mRNA levels of epithelial-mesenchymal transition markers, suggesting that it might modulate cell plasticity. Our data demonstrate that LQB-223 impairs 3D culture growth and migration in 2D and 3D models of breast cancer exhibiting different phenotypes.


Assuntos
Antineoplásicos/farmacologia , Apoptose , Neoplasias da Mama/metabolismo , Resistencia a Medicamentos Antineoplásicos , Pterocarpanos/farmacologia , Antineoplásicos/toxicidade , Movimento Celular , Proliferação de Células , Feminino , Humanos , Proteínas Inibidoras de Apoptose/metabolismo , Células MCF-7 , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Pterocarpanos/toxicidade , Esferoides Celulares/efeitos dos fármacos , Survivina/genética , Survivina/metabolismo , Células Tumorais Cultivadas , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo
5.
Parasitol Int ; 64(6): 622-31, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26335616

RESUMO

Toxoplasmosis is a widely disseminated disease caused by Toxoplasma gondii, an intracellular protozoan parasite. Standard treatment causes many side effects, such as depletion of bone marrow cells, skin rashes and gastrointestinal implications. Therefore, it is necessary to find chemotherapeutic alternatives for the treatment of this disease. It was shown that a naphthoquinone derivative compound is active against T. gondii, RH strain, with an IC50 around 2.5 µM. Here, three different naphthoquinone derivative compounds with activity against leukemia cells and breast carcinoma cell were tested against T. gondii (RH strain) infected LLC-MK2 cell line. All the compounds were able to inhibit parasite growth in vitro, but one of them showed an IC50 activity below 1 µM after 48 h of treatment. The compounds showed low toxicity to the host cell. In addition, these compounds were able to induce tachyzoite-bradyzoite conversion confirmed by morphological changes, Dolichus biflorus lectin cyst wall labeling and characterization of amylopectin granules in the parasites by electron microscopy analysis using the Thierry technique. Furthermore, the compounds induced alterations on the ultrastructure of the parasite. Taken together, our results point to the naphthoquinone derivative (LQB 151) as a potential compound for the development of new drugs for the treatment of toxoplasmosis.


Assuntos
Antiprotozoários/farmacologia , Naftoquinonas/farmacologia , Toxoplasma/efeitos dos fármacos , Toxoplasma/crescimento & desenvolvimento , Toxoplasmose Animal/tratamento farmacológico , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Macaca mulatta , Microscopia Eletrônica , Relação Estrutura-Atividade , Toxoplasmose Animal/parasitologia
6.
Int J Oncol ; 45(5): 1949-58, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25174716

RESUMO

Acute myeloid leukemia (AML) patients' outcome is usually poor, mainly because of drug resistance phenotype. The identification of new drugs able to overcome mechanisms of chemoresistance is essential. The pterocarpanquinone LQB-118 compound has been shown to have a potent cytotoxic activity in myeloid leukemia cell lines and patient cells. Our aim was to investigate if LQB-118 is able to target FoxO3a and FoxM1 signaling pathways while sensitizing AML cell lines. LQB-118 induced apoptosis in both AML cell lines HL60 (M3 FAB subtype) and U937 (M4/M5 FAB subtype). Cell death occurred independently of alterations in cell cycle distribution. In vivo administration revealed that LQB-118 was not cytotoxic to normal bone marrow-derived cells isolated from mice. LQB-118 induced FoxO3a nuclear translocation and upregulation of its direct transcriptional target Bim, in HL60 cells. However, LQB-118 induced FoxO3a nuclear exclusion, followed by Bim downregulation, in U937 cells. Concomitantly, LQB-118 exposure reduced FoxM1 and Survivin expression in U937 cells, but this effect was more subtle in HL60 cells. Taken together, our data suggest that LQB-118 has a selective and potent antitumor activity against AML cells with distinct molecular subtypes, and it involves differential modulation of the signaling pathways associated with FoxO3a and FoxM1 transcription factors.


Assuntos
Fatores de Transcrição Forkhead/biossíntese , Leucemia Mieloide Aguda/tratamento farmacológico , Naftoquinonas/administração & dosagem , Pterocarpanos/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proteína Forkhead Box M1 , Proteína Forkhead Box O3 , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Células HL-60 , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Camundongos
7.
Vet Parasitol ; 186(3-4): 261-9, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-22177332

RESUMO

Toxoplasma gondii, the agent of Toxoplasmosis, is an obligate intracellular protozoan able to infect a wide range of vertebrate cells, including nonprofessional and professional phagocytes. Therefore, drugs must have intracellular activities in order to control this parasite. The most common therapy for Toxoplasmosis is the combination of sulfadiazine and pyrimethamine. This treatment is associated with adverse reactions, thus, the development of new drugs is necessary. In previous studies, naphthoquinone derivatives showed anti-cancer activity functioning as agents capable of acting on groups of DNA, preventing cancer cells duplication. These derivatives also display anti-parasitic activity against Plasmodium falciparum and Leishmania amazonensis. The derivative pterocarpanquinone tested in this work resulted from the molecular hybridization between pterocarpans and naphtoquinone that presents anti-tumoral and anti-parasitic activities of lapachol. The aim of this work was to determine if this derivative is able to change T. gondii growth within LLC-MK2 cells. The drug did not arrest host cell growth, but was able to decrease the infection index of T. gondii with an IC(50) of 2.5 µM. Scanning and transmission electron microscopy analysis showed morphological changes of parasites including membrane damage. The parasite that survived tended to encyst as seen by Dolichos biflorus lectin staining and Bag-1 expression. These results suggest that pterocarpanquinones are drugs potentially important for the killing and encystment of T. gondii.


Assuntos
Pterocarpanos/farmacologia , Toxoplasma/efeitos dos fármacos , Animais , Linhagem Celular , Relação Dose-Resposta a Droga , Fibroblastos/parasitologia , Macaca mulatta , Microscopia Eletrônica de Varredura , Estrutura Molecular , Pterocarpanos/química , Toxoplasma/ultraestrutura
8.
Biochem Pharmacol ; 66(11): 2169-76, 2003 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-14609741

RESUMO

The aim of the present work was to analyse the interaction between Na(+),K(+)-ATPase and one of our recent synthesized coumestans, namely the original molecule 2-methoxy-3,8,9-trihydroxy coumestan (PCALC36). Rat brain (mainly alpha 2 and alpha 3 Na(+),K(+)-ATPase isoforms) and kidney (alpha 1 isoform) fractions enriched with Na(+),K(+)-ATPase were utilized to compare the inhibition promoted by PCALC36 with that of classical inhibitors like ouabain and vanadate. Analysis of inhibition curves revealed that unlike ouabain, which was about a thousand times more potent to inhibit brain isoforms than kidney isoform, PCALC36 had a similar affinity for brain (IC(50)=4.33+/-0.90 microM) and kidney (IC(50)=11.04+/-0.86 microM) isoforms. The inhibitory effect of PCALC36 was not antagonized by 1-10 mM K(+), as observed with ouabain. Whereas vanadate was more potent in ionic conditions promoting the E2 conformation of the enzyme, the inhibitory effect of PCALC36 was equal in ionic conditions favouring either the E1 or E2 conformations. Equilibrium binding assays with [3H]ouabain revealed that the addition of 2-10 microM PCALC36 did not change the K(d) of ouabain but decreased its maximal binding (B(max)) in a concentration-dependent manner (from 76.6 to 44.0 pmol/mg protein). This inhibitory effect of PCALC36 was not reverted after an extensive washing procedure indicating that it forms a very stable complex with Na(+),K(+)-ATPase. We conclude that PCALC36, a new molecule with a non-steroidal skeleton, inhibits the Na(+),K(+)-ATPase by a mechanism of action different from the cardiac glycosides and could thus serve as a structural paradigm to develop new inotropic drugs.


Assuntos
Cumarínicos/metabolismo , Cumarínicos/farmacologia , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Cumarínicos/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Rim/efeitos dos fármacos , Rim/enzimologia , Masculino , Ouabaína/metabolismo , Ouabaína/farmacologia , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , Ratos , Ratos Wistar , Vanadatos/metabolismo , Vanadatos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA