Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Prog Neurobiol ; 237: 102612, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38642602

RESUMO

Recurrent seizures lead to accumulation of the activity-dependent transcription factor ∆FosB in hippocampal dentate granule cells in both mouse models of epilepsy and mouse models of Alzheimer's disease (AD), which is also associated with increased incidence of seizures. In patients with AD and related mouse models, the degree of ∆FosB accumulation corresponds with increasing severity of cognitive deficits. We previously found that ∆FosB impairs spatial memory in mice by epigenetically regulating expression of target genes such as calbindin that are involved in synaptic plasticity. However, the suppression of calbindin in conditions of neuronal hyperexcitability has been demonstrated to provide neuroprotection to dentate granule cells, indicating that ∆FosB may act over long timescales to coordinate neuroprotective pathways. To test this hypothesis, we used viral-mediated expression of ∆JunD to interfere with ∆FosB signaling over the course of several months in transgenic mice expressing mutant human amyloid precursor protein (APP), which exhibit spontaneous seizures and develop AD-related neuropathology and cognitive deficits. Our results demonstrate that persistent ∆FosB activity acts through discrete modes of hippocampal target gene regulation to modulate neuronal excitability, limit recurrent seizure activity, and provide neuroprotection to hippocampal dentate granule cells in APP mice.


Assuntos
Precursor de Proteína beta-Amiloide , Giro Denteado , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-fos , Convulsões , Animais , Giro Denteado/metabolismo , Camundongos , Convulsões/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Neuroproteção/fisiologia , Modelos Animais de Doenças , Doença de Alzheimer/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Humanos
2.
Science ; 372(6540)2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33888613

RESUMO

The integrated stress response (ISR) maintains proteostasis by modulating protein synthesis and is important in synaptic plasticity, learning, and memory. We developed a reporter, SPOTlight, for brainwide imaging of ISR state with cellular resolution. Unexpectedly, we found a class of neurons in mouse brain, striatal cholinergic interneurons (CINs), in which the ISR was activated at steady state. Genetic and pharmacological manipulations revealed that ISR signaling was necessary in CINs for normal type 2 dopamine receptor (D2R) modulation. Inhibiting the ISR inverted the sign of D2R modulation of CIN firing and evoked dopamine release and altered skill learning. Thus, a noncanonical, steady-state mode of ISR activation is found in CINs, revealing a neuromodulatory role for the ISR in learning.


Assuntos
Neurônios Colinérgicos/metabolismo , Dopamina/metabolismo , Interneurônios/fisiologia , Aprendizagem/fisiologia , Estresse Fisiológico , Potenciais de Ação , Animais , Corpo Estriado/citologia , Corpo Estriado/fisiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Destreza Motora , Plasticidade Neuronal , Técnicas de Patch-Clamp , Biossíntese de Proteínas , Receptores de Dopamina D2/metabolismo
3.
Science ; 368(6489)2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32327570

RESUMO

Protein quality control is essential for the proper function of cells and the organisms that they make up. The resulting loss of proteostasis, the processes by which the health of the cell's proteins is monitored and maintained at homeostasis, is associated with a wide range of age-related human diseases. Here, we highlight how the integrated stress response (ISR), a central signaling network that responds to proteostasis defects by tuning protein synthesis rates, impedes the formation of long-term memory. In addition, we address how dysregulated ISR signaling contributes to the pathogenesis of complex diseases, including cognitive disorders, neurodegeneration, cancer, diabetes, and metabolic disorders. The development of tools through which the ISR can be modulated promises to uncover new avenues to diminish pathologies resulting from it for clinical benefit.


Assuntos
Fator de Iniciação 2 em Eucariotos/metabolismo , Proteostase , Estresse Fisiológico , Fatores de Complexo Ternário/metabolismo , Acetamidas/química , Acetamidas/farmacologia , Animais , Cicloexilaminas/química , Cicloexilaminas/farmacologia , Fator de Iniciação 2 em Eucariotos/antagonistas & inibidores , Humanos , Imunidade , Doenças Metabólicas/metabolismo , Camundongos , Neoplasias/metabolismo , Fosfotransferases/metabolismo
4.
Nat Med ; 25(11): 1684-1690, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31636454

RESUMO

Dysregulation of the mammalian target of rapamycin (mTOR) signaling, which is mediated by two structurally and functionally distinct complexes, mTORC1 and mTORC2, has been implicated in several neurological disorders1-3. Individuals carrying loss-of-function mutations in the phosphatase and tensin homolog (PTEN) gene, a negative regulator of mTOR signaling, are prone to developing macrocephaly, autism spectrum disorder (ASD), seizures and intellectual disability2,4,5. It is generally believed that the neurological symptoms associated with loss of PTEN and other mTORopathies (for example, mutations in the tuberous sclerosis genes TSC1 or TSC2) are due to hyperactivation of mTORC1-mediated protein synthesis1,2,4,6,7. Using molecular genetics, we unexpectedly found that genetic deletion of mTORC2 (but not mTORC1) activity prolonged lifespan, suppressed seizures, rescued ASD-like behaviors and long-term memory, and normalized metabolic changes in the brain of mice lacking Pten. In a more therapeutically oriented approach, we found that administration of an antisense oligonucleotide (ASO) targeting mTORC2's defining component Rictor specifically inhibits mTORC2 activity and reverses the behavioral and neurophysiological abnormalities in adolescent Pten-deficient mice. Collectively, our findings indicate that mTORC2 is the major driver underlying the neuropathophysiology associated with Pten-deficiency, and its therapeutic reduction could represent a promising and broadly effective translational therapy for neurological disorders where mTOR signaling is dysregulated.


Assuntos
Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Doenças do Sistema Nervoso/genética , PTEN Fosfo-Hidrolase/genética , Serina-Treonina Quinases TOR/genética , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Humanos , Mutação com Perda de Função/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Camundongos , Camundongos Knockout , Doenças do Sistema Nervoso/metabolismo , Doenças do Sistema Nervoso/patologia , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/farmacologia , PTEN Fosfo-Hidrolase/deficiência , Proteína Companheira de mTOR Insensível à Rapamicina/antagonistas & inibidores , Proteína Companheira de mTOR Insensível à Rapamicina/genética , Proteína 1 do Complexo Esclerose Tuberosa/genética
5.
Nat Commun ; 10(1): 58, 2019 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-30610193

RESUMO

Bloodborne infections with Candida albicans are an increasingly recognized complication of modern medicine. Here, we present a mouse model of low-grade candidemia to determine the effect of disseminated infection on cerebral function and relevant immune determinants. We show that intravenous injection of 25,000 C. albicans cells causes a highly localized cerebritis marked by the accumulation of activated microglial and astroglial cells around yeast aggregates, forming fungal-induced glial granulomas. Amyloid precursor protein accumulates within the periphery of these granulomas, while cleaved amyloid beta (Aß) peptides accumulate around the yeast cells. CNS-localized C. albicans further activate the transcription factor NF-κB and induce production of interleukin-1ß (IL-1ß), IL-6, and tumor necrosis factor (TNF), and Aß peptides enhance both phagocytic and antifungal activity from BV-2 cells. Mice infected with C. albicans display mild memory impairment that resolves with fungal clearance. Our results warrant additional studies to understand the effect of chronic cerebritis on cognitive and immune function.


Assuntos
Candidemia/complicações , Cérebro/patologia , Transtornos da Memória/microbiologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/fisiologia , Animais , Astrócitos/metabolismo , Astrócitos/microbiologia , Astrócitos/patologia , Candida albicans , Candidemia/metabolismo , Candidemia/patologia , Cérebro/microbiologia , Cérebro/fisiopatologia , Interleucina-1beta/metabolismo , Transtornos da Memória/etiologia , Transtornos da Memória/metabolismo , Camundongos , Microglia/metabolismo , Microglia/microbiologia , Microglia/patologia , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa
6.
Elife ; 52016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26928076

RESUMO

Adolescents are particularly vulnerable to nicotine, the principal addictive component driving tobacco smoking. In a companion study, we found that reduced activity of the translation initiation factor eIF2α underlies the hypersensitivity of adolescent mice to the effects of cocaine. Here we report that nicotine potentiates excitatory synaptic transmission in ventral tegmental area dopaminergic neurons more readily in adolescent mice compared to adults. Adult mice with genetic or pharmacological reduction in p-eIF2α-mediated translation are more susceptible to nicotine's synaptic effects, like adolescents. When we investigated the influence of allelic variability of the Eif2s1 gene (encoding eIF2α) on reward-related neuronal responses in human smokers, we found that a single nucleotide polymorphism in the Eif2s1 gene modulates mesolimbic neuronal reward responses in human smokers. These findings suggest that p-eIF2α regulates synaptic actions of nicotine in both mice and humans, and that reduced p-eIF2α may enhance susceptibility to nicotine (and other drugs of abuse) during adolescence.


Assuntos
Neurônios Dopaminérgicos/fisiologia , Fator de Iniciação 2 em Eucariotos/metabolismo , Nicotina/metabolismo , Biossíntese de Proteínas , Processamento de Proteína Pós-Traducional , Sinapses/efeitos dos fármacos , Área Tegmentar Ventral/fisiologia , Animais , Humanos , Camundongos , Fosforilação , Fumar , Nicotiana
7.
J Neurosci ; 35(41): 13836-42, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26468183

RESUMO

The mammalian target of rapamycin (mTOR) is a central regulator of a diverse array of cellular processes, including cell growth, proliferation, autophagy, translation, and actin polymerization. Components of the mTOR cascade are present at synapses and influence synaptic plasticity and spine morphogenesis. A prevailing view is that the study of mTOR and its role in autism spectrum disorders (ASDs) will elucidate the molecular mechanisms by which mTOR regulates neuronal function under physiological and pathological conditions. Although many ASDs arise as a result of mutations in genes with multiple molecular functions, they appear to converge on common biological pathways that give rise to autism-relevant behaviors. Dysregulation of mTOR signaling has been identified as a phenotypic feature common to fragile X syndrome, tuberous sclerosis complex 1 and 2, neurofibromatosis 1, phosphatase and tensin homolog, and potentially Rett syndrome. Below are a summary of topics covered in a symposium that presents dysregulation of mTOR as a unifying theme in a subset of ASDs.


Assuntos
Transtorno Autístico/metabolismo , Transtorno Autístico/patologia , Modelos Animais de Doenças , Transdução de Sinais/fisiologia , Sirolimo/metabolismo , Animais , Transtorno Autístico/fisiopatologia , Humanos , Modelos Biológicos
8.
Cell Host Microbe ; 9(4): 331-41, 2011 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-21501832

RESUMO

The protozoan parasite Leishmania alters the activity of its host cell, the macrophage. However, little is known about the effect of Leishmania infection on host protein synthesis. Here, we show that the Leishmania protease GP63 cleaves the mammalian/mechanistic target of rapamycin (mTOR), a serine/threonine kinase that regulates the translational repressor 4E-BP1. mTOR cleavage results in the inhibition of mTOR complex 1 (mTORC1) and concomitant activation of 4E-BP1 to promote Leishmania proliferation. Consistent with these results, pharmacological activation of 4E-BPs with rapamycin, results in a dramatic increase in parasite replication. In contrast, genetic deletion of 4E-BP1/2 reduces parasite load in macrophages ex vivo and decreases susceptibility to cutaneous leishmaniasis in vivo. The parasite resistant phenotype of 4E-BP1/2 double-knockout mice involves an enhanced type I IFN response. This study demonstrates that Leishmania evolved a survival mechanism by activating 4E-BPs, which serve as major targets for host translational control.


Assuntos
Interações Hospedeiro-Parasita , Leishmania major/fisiologia , Leishmaniose Cutânea/metabolismo , Macrófagos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular , Linhagem Celular , Fatores de Iniciação em Eucariotos , Leishmaniose Cutânea/parasitologia , Macrófagos/parasitologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Metaloendopeptidases/metabolismo , Camundongos , Complexos Multiproteicos , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Reação em Cadeia da Polimerase , Biossíntese de Proteínas , Proteínas/metabolismo , Deleção de Sequência , Transdução de Sinais/genética , Sirolimo/farmacologia
9.
Proc Natl Acad Sci U S A ; 107(4): 1576-81, 2010 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-20080710

RESUMO

Oncolytic viruses constitute a promising therapy against malignant gliomas (MGs). However, virus-induced type I IFN greatly limits its clinical application. The kinase mammalian target of rapamycin (mTOR) stimulates type I IFN production via phosphorylation of its effector proteins, 4E-BPs and S6Ks. Here we show that mouse embryonic fibroblasts and mice lacking S6K1 and S6K2 are more susceptible to vesicular stomatitis virus (VSV) infection than their WT counterparts as a result of an impaired type I IFN response. We used this knowledge to employ a pharmacoviral approach to treat MGs. The highly specific inhibitor of mTOR rapamycin, in combination with an IFN-sensitive VSV-mutant strain (VSV(DeltaM51)), dramatically increased the survival of immunocompetent rats bearing MGs. More importantly, VSV(DeltaM51) selectively killed tumor, but not normal cells, in MG-bearing rats treated with rapamycin. These results demonstrate that reducing type I IFNs through inhibition of mTORC1 is an effective strategy to augment the therapeutic activity of VSV(DeltaM51).


Assuntos
Glioma/metabolismo , Glioma/terapia , Interferon Tipo I/biossíntese , Fatores de Transcrição/metabolismo , Estomatite Vesicular/metabolismo , Vesiculovirus/fisiologia , Animais , Linhagem Celular , Linhagem Celular Tumoral , Feminino , Glioma/genética , Glioma/virologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Knockout , Complexos Multiproteicos , Transplante de Neoplasias , Terapia Viral Oncolítica , Proteínas , Ratos , Ratos Endogâmicos F344 , Proteínas Quinases S6 Ribossômicas/deficiência , Proteínas Quinases S6 Ribossômicas/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/deficiência , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Sirolimo/farmacologia , Serina-Treonina Quinases TOR , Estomatite Vesicular/genética , Estomatite Vesicular/virologia , Vesiculovirus/genética
10.
Cancer Cell ; 16(5): 439-46, 2009 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-19878875

RESUMO

eIF4E, the mRNA 5' cap-binding translation initiation factor, is overexpressed in numerous cancers and is implicated in mechanisms underlying oncogenesis and senescence. 4E-BPs (eIF4E-binding proteins) inhibit eIF4E activity, and thereby act as suppressors of eIF4E-dependent pathways. Here, we show that tumorigenesis is increased in p53 knockout mice that lack 4E-BP1 and 4E-BP2. However, primary fibroblasts lacking 4E-BPs, but expressing p53, undergo premature senescence and resist oncogene-driven transformation. Thus, the p53 status governs 4E-BP-dependent senescence and transformation. Intriguingly, the 4E-BPs engage in senescence via translational control of the p53-stabilizing protein, Gas2. Our data demonstrate a role for 4E-BPs in senescence and tumorigenesis and highlight a p53-mediated mechanism of senescence through a 4E-BP-dependent pathway.


Assuntos
Transformação Celular Neoplásica/genética , Fator de Iniciação 4E em Eucariotos/genética , Proteína Supressora de Tumor p53/genética , Animais , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Senescência Celular/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Camundongos , Camundongos Knockout , Proteína Supressora de Tumor p53/metabolismo
11.
J Gen Virol ; 88(Pt 11): 3039-3042, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17947528

RESUMO

Hepatitis A virus (HAV) is a hepatotropic member of the family Picornaviridae. Previous studies suggested that HAV may evolve more slowly than other members of the family. To estimate HAV substitution rates precisely, we used a Bayesian Markov chain Monte Carlo (MCMC) approach on temporally sampled HAV VP1 full-length sequences from strains isolated in France. A mean rate of evolutionary change of 9.76 x 10(-4) nucleotide substitution per site per year was found. The results also revealed that the synonymous rate found for HAV is lower than that of other members of the family. Bayesian skyline plots revealed a sharp decline in the effective number of infections in 1996, coinciding with the introduction of HAV vaccine.


Assuntos
Evolução Molecular , Vírus da Hepatite A/genética , Vírus da Hepatite A/fisiologia , Hepatite A/virologia , Mutação Puntual , Sequência de Bases , França , Hepatite A/epidemiologia , Humanos , Método de Monte Carlo , Proteínas Estruturais Virais/genética
12.
RNA ; 13(12): 2330-40, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17942745

RESUMO

Picornavirus infectivity is dependent on the RNA poly(A) tail, which binds the poly(A) binding protein (PABP). PABP was reported to stimulate viral translation and RNA synthesis. Here, we studied encephalomyocarditis virus (EMCV) and poliovirus (PV) genome expression in Krebs-2 and HeLa cell-free extracts that were drastically depleted of PABP (96%-99%). Although PABP depletion markedly diminished EMCV and PV internal ribosome entry site (IRES)-mediated translation of a polyadenylated luciferase mRNA, it displayed either no (EMCV) or slight (PV) deleterious effect on the translation of the full-length viral RNAs. Moreover, PABP-depleted extracts were fully competent in supporting EMCV and PV RNA replication and virus assembly. In contrast, removing the poly(A) tail from EMCV RNA dramatically reduced RNA synthesis and virus yields in cell-free reactions. The advantage conferred by the poly(A) tail to EMCV synthesis was more pronounced in untreated than in nuclease-treated extract, indicating that endogenous cellular mRNAs compete with the viral RNA for a component(s) of the RNA replication machinery. These results suggest that the poly(A) tail functions in picornavirus replication largely independent of PABP.


Assuntos
Vírus da Encefalomiocardite/genética , Genoma Viral , Picornaviridae/genética , Poliovirus/genética , Proteínas de Ligação a Poli(A)/metabolismo , RNA Viral/genética , Proteínas Virais/metabolismo , Linhagem Celular Tumoral , Vírus da Encefalomiocardite/isolamento & purificação , Células HeLa , Humanos , Poliovirus/isolamento & purificação , Biossíntese de Proteínas , RNA Viral/metabolismo , Replicação Viral
13.
Virus Res ; 127(2): 151-7, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17328982

RESUMO

Hepatitis A virus (HAV), the causative agent of type A viral hepatitis, was first identified about three decades ago. Recent findings have shown that HAV possess several characteristics that make it unique among the family Picornaviridae, particularly in terms of its mechanisms of polyprotein processing and virion morphogenesis. HAV circulates in vivo as distributions of closely genetically related variants referred to as quasispecies. HAV exploits all known mechanisms of genetic variation to ensure its survival, including mutation and recombination. Only one serotype and six different genetic groups (three humans and three simian) have been described. HAV mutation rate is significantly lower as compared to other members of the family Picornaviridae. The mode of evolution appears, at least in part, to contribute to the presence of only one known serotype.


Assuntos
Evolução Molecular , Variação Genética/genética , Vírus da Hepatite A/genética , Hepatite A/virologia , Humanos , Mutação , Filogenia , Recombinação Genética
14.
J Gen Virol ; 87(Pt 1): 115-118, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16361423

RESUMO

Hepatitis A virus (HAV) is a hepatotropic member of the family Picornaviridae. Despite a remarkable antigenic stability, recent results have shown that HAV exists in vivo and in cell culture as distributions of genetically related, non-identical variants, referred to as quasispecies. To gain insight into HAV evolution over time in a specific geographical region, genotype I consensus sequences from strains isolated in France in consecutive years were studied. Phylogenetic neighbour-joining method and a non-hierarchical partition analysis, designed to analyse viral quasispecies, indicate that at least five distinct subpopulations of HAV were identified in the course of the disease episode. Strikingly, over time, different subpopulations cycled in dominance. The coexistence of distinct subpopulations whose frequency varies with time is consistent with quasispecies dynamics, and suggests that variation in the dominant HAV population may provide HAV adaptability without being reflected in significant antigenic variation.


Assuntos
Vírus da Hepatite A/classificação , Hepatite A/epidemiologia , Proteínas Estruturais Virais/genética , Variação Genética , Hepatite A/virologia , Vírus da Hepatite A/genética , Vírus da Hepatite A/fisiologia , Humanos , Fenótipo , Filogenia
15.
J Virol ; 76(18): 9516-25, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12186933

RESUMO

Hepatitis A virus (HAV) is a positive-stranded RNA virus in the genus Hepatovirus in the family Picornaviridae So far, analysis of the genetic variability of HAV has been based on two discrete regions, the VP1/2A junction and the VP1 N terminus. In this report, we determined the nucleotide and deduced amino acid sequences of the complete VP1 gene of 81 strains from France, Kosovo, Mexico, Argentina, Chile, and Uruguay and compared them with the sequences of seven strains of HAV isolated elsewhere. Overall strain variation in the complete VP1 gene was found to be as high as 23.7% at the nucleotide level and 10.5% at the amino acid level. Different phylogenetic methods revealed that HAV sequences form five distinct and well-supported genetic lineages. Within these lineages, HAV sequences clustered by geographical origin only for European strains. The analysis of the complete VP1 gene allowed insight into the mode of evolution of HAV and revealed the emergence of a novel variant with a 15-amino-acid deletion located on the VP1 region where neutralization escape mutations were found. This could be the first antigenic variant of HAV so far identified.


Assuntos
Surtos de Doenças , Evolução Molecular , Vírus da Hepatite A/classificação , Vírus da Hepatite A/genética , Hepatite A/epidemiologia , Proteínas Estruturais Virais/genética , Sequência de Aminoácidos , França/epidemiologia , Variação Genética , Hepatite A/virologia , Humanos , México/epidemiologia , Dados de Sequência Molecular , Filogenia , Picornaviridae/genética , Análise de Sequência de DNA , América do Sul/epidemiologia , Iugoslávia/epidemiologia
16.
J Gen Virol ; 82(Pt 11): 2647-2652, 2001 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11602776

RESUMO

Genetic analysis of selected genome regions of hepatitis A virus (HAV) suggested that distinct genotypes of HAV could be found in different geographical regions. In order to gain insight into the genetic variability and mode of evolution of HAV in South America, an analysis was performed of sequence data obtained from the VP1 amino terminus and the VP1/2A region of HAV strains isolated over a short period of time in Uruguay, Argentina and Chile. Sequences obtained from 22 distinct HAV isolates were compared with published sequences from 21 different strains isolated all over the world. Phylogenetic analysis revealed that all strains isolated belong to a unique sub-genotype (IA). Strains isolated during an outbreak period showed a higher degree of heterogeneity than anticipated previously and the co-circulation of different isolates. The genetic variability among strains isolated in this region seems to be higher in comparison with strains isolated in other regions of the world.


Assuntos
Vírus da Hepatite A Humana/classificação , Vírus da Hepatite A Humana/genética , Hepatite A/virologia , Surtos de Doenças , Variação Genética , Hepatite A/epidemiologia , Humanos , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA , América do Sul/epidemiologia , Proteínas Estruturais Virais/química , Proteínas Estruturais Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA