Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(9): e0291443, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37708135

RESUMO

Machine learning tools are increasingly used to improve the quality of care and the soundness of a treatment plan. Explainable AI (XAI) helps users in understanding the inner mechanisms of opaque machine learning models and is a driver of trust and adoption. Explanation methods for black-box models exist, but there is a lack of user studies on the interpretability of the provided explanations. We used a Think Aloud Protocol (TAP) to explore oncologists' assessment of a lung cancer relapse prediction system with the aim of refining the purpose-built explanation model for better credibility and utility. Novel to this context, TAP is used as a neutral methodology to elicit experts' thought processes and judgements of the AI system, without explicit prompts. TAP aims to elicit the factors which influenced clinicians' perception of credibility and usefulness of the system. Ten oncologists took part in the study. We conducted a thematic analysis of their verbalized responses, generating five themes that help us to understand the context within which oncologists' may (or may not) integrate an explainable AI system into their working day.


Assuntos
Sistemas de Apoio a Decisões Clínicas , Oncologistas , Humanos , Julgamento , Aprendizado de Máquina , Som
2.
JCO Clin Cancer Inform ; 7: e2200062, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37428988

RESUMO

PURPOSE: Stratifying patients with cancer according to risk of relapse can personalize their care. In this work, we provide an answer to the following research question: How to use machine learning to estimate probability of relapse in patients with early-stage non-small-cell lung cancer (NSCLC)? MATERIALS AND METHODS: For predicting relapse in 1,387 patients with early-stage (I-II) NSCLC from the Spanish Lung Cancer Group data (average age 65.7 years, female 24.8%, male 75.2%), we train tabular and graph machine learning models. We generate automatic explanations for the predictions of such models. For models trained on tabular data, we adopt SHapley Additive exPlanations local explanations to gauge how each patient feature contributes to the predicted outcome. We explain graph machine learning predictions with an example-based method that highlights influential past patients. RESULTS: Machine learning models trained on tabular data exhibit a 76% accuracy for the random forest model at predicting relapse evaluated with a 10-fold cross-validation (the model was trained 10 times with different independent sets of patients in test, train, and validation sets, and the reported metrics are averaged over these 10 test sets). Graph machine learning reaches 68% accuracy over a held-out test set of 200 patients, calibrated on a held-out set of 100 patients. CONCLUSION: Our results show that machine learning models trained on tabular and graph data can enable objective, personalized, and reproducible prediction of relapse and, therefore, disease outcome in patients with early-stage NSCLC. With further prospective and multisite validation, and additional radiological and molecular data, this prognostic model could potentially serve as a predictive decision support tool for deciding the use of adjuvant treatments in early-stage lung cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Masculino , Feminino , Idoso , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/terapia , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/terapia , Recidiva Local de Neoplasia/diagnóstico , Aprendizado de Máquina , Prognóstico
3.
J Biomed Inform ; 144: 104424, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37352900

RESUMO

OBJECTIVE: Lung cancer exhibits unpredictable recurrence in low-stage tumors and variable responses to different therapeutic interventions. Predicting relapse in early-stage lung cancer can facilitate precision medicine and improve patient survivability. While existing machine learning models rely on clinical data, incorporating genomic information could enhance their efficiency. This study aims to impute and integrate specific types of genomic data with clinical data to improve the accuracy of machine learning models for predicting relapse in early-stage, non-small cell lung cancer patients. METHODS: The study utilized a publicly available TCGA lung cancer cohort and imputed genetic pathway scores into the Spanish Lung Cancer Group (SLCG) data, specifically in 1348 early-stage patients. Initially, tumor recurrence was predicted without imputed pathway scores. Subsequently, the SLCG data were augmented with pathway scores imputed from TCGA. The integrative approach aimed to enhance relapse risk prediction performance. RESULTS: The integrative approach achieved improved relapse risk prediction with the following evaluation metrics: an area under the precision-recall curve (PR-AUC) score of 0.75, an area under the ROC (ROC-AUC) score of 0.80, an F1 score of 0.61, and a Precision of 0.80. The prediction explanation model SHAP (SHapley Additive exPlanations) was employed to explain the machine learning model's predictions. CONCLUSION: We conclude that our explainable predictive model is a promising tool for oncologists that addresses an unmet clinical need of post-treatment patient stratification based on the relapse risk while also improving the predictive power by incorporating proxy genomic data not available for specific patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Recidiva Local de Neoplasia/genética , Pulmão
4.
Cancers (Basel) ; 14(16)2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36011034

RESUMO

BACKGROUND: Artificial intelligence (AI) has contributed substantially in recent years to the resolution of different biomedical problems, including cancer. However, AI tools with significant and widespread impact in oncology remain scarce. The goal of this study is to present an AI-based solution tool for cancer patients data analysis that assists clinicians in identifying the clinical factors associated with poor prognosis, relapse and survival, and to develop a prognostic model that stratifies patients by risk. MATERIALS AND METHODS: We used clinical data from 5275 patients diagnosed with non-small cell lung cancer, breast cancer, and non-Hodgkin lymphoma at Hospital Universitario Puerta de Hierro-Majadahonda. Accessible clinical parameters measured with a wearable device and quality of life questionnaires data were also collected. RESULTS: Using an AI-tool, data from 5275 cancer patients were analyzed, integrating clinical data, questionnaires data, and data collected from wearable devices. Descriptive analyses were performed in order to explore the patients' characteristics, survival probabilities were calculated, and a prognostic model identified low and high-risk profile patients. CONCLUSION: Overall, the reconstruction of the population's risk profile for the cancer-specific predictive model was achieved and proved useful in clinical practice using artificial intelligence. It has potential application in clinical settings to improve risk stratification, early detection, and surveillance management of cancer patients.

5.
AMIA Annu Symp Proc ; 2022: 1062-1071, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37128408

RESUMO

Early-stage lung cancer is crucial clinically due to its insidious nature and rapid progression. Most of the prediction models designed to predict tumour recurrence in the early stage of lung cancer rely on the clinical or medical history of the patient. However, their performance could likely be improved if the input patient data contained genomic information. Unfortunately, such data is not always collected. This is the main motivation of our work, in which we have imputed and integrated specific type of genomic data with clinical data to increase the accuracy of machine learning models for prediction of relapse in early-stage, non-small cell lung cancer patients. Using a publicly available TCGA lung adenocarcinoma cohort of 501 patients, their aneuploidy scores were imputed into similar records in the Spanish Lung Cancer Group (SLCG) data, more specifically a cohort of 1348 early-stage patients. First, the tumor recurrence in those patients was predicted without the imputed aneuploidy scores. Then, the SLCG data were enriched with the aneuploidy scores imputed from TCGA. This integrative approach improved the prediction of the relapse risk, achieving area under the precision-recall curve (PR-AUC) score of 0.74, and area under the ROC (ROC-AUC) score of 0.79. Using the prediction explanation model SHAP (SHapley Additive exPlanations), we further explained the predictions performed by the machine learning model. We conclude that our explainable predictive model is a promising tool for oncologists that addresses an unmet clinical need of post-treatment patient stratification based on the relapse risk, while also improving the predictive power by incorporating proxy genomic data not available for the actual specific patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Recidiva Local de Neoplasia , Genômica
6.
AMIA Annu Symp Proc ; 2021: 853-862, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35308971

RESUMO

Early detection and mitigation of disease recurrence in non-small cell lung cancer (NSCLC) patients is a nontrivial problem that is typically addressed either by rather generic follow-up screening guidelines, self-reporting, simple nomograms, or by models that predict relapse risk in individual patients using statistical analysis of retrospective data. We posit that machine learning models trained on patient data can provide an alternative approach that allows for more efficient development of many complementary models at once, superior accuracy, less dependency on the data collection protocols and increased support for explainability of the predictions. In this preliminary study, we describe an experimental suite of various machine learning models applied on a patient cohort of 2442 early stage NSCLC patients. We discuss the promising results achieved, as well as the lessons we learned while developing this baseline for further, more advanced studies in this area.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/patologia , Humanos , Neoplasias Pulmonares/diagnóstico , Estadiamento de Neoplasias , Nomogramas , Prognóstico , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA