Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
3.
Oncogenesis ; 11(1): 42, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35882839

RESUMO

INTRODUCTION: Colorectal cancer remains a public health issue and most colon cancer patients succumb to the development of metastases. Using a specific protocol of pressure-assisted interstitial fluid extrusion to recover soluble biomarkers, we identified paladin as a potential colon cancer liver metastases biomarker. METHODS: Using shRNA gene knockdown, we explored the biological function of paladin in colon cancer cells and investigated the phospho-proteome within colon cancer cells. We successively applied in vitro migration assays, in vivo metastasis models and co-immunoprecipitation experiments. RESULTS: We discovered that paladin is required for colon cancer cell migration and metastasis, and that paladin depletion altered the phospho-proteome within colon cancer cells. Data are available via ProteomeXchange with identifier PXD030803. Thanks to immunoprecipitation experiments, we demonstrated that paladin, was interacting with SSH1, a phosphatase involved in colon cancer metastasis. Finally, we showed that paladin depletion in cancer cells results in a less dynamic actin cytoskeleton. CONCLUSIONS: Paladin is an undervalued protein in oncology. This study highlights for the first time that, paladin is participating in actin cytoskeleton remodelling and is required for efficient cancer cell migration.

4.
Sci Transl Med ; 13(623): eabf7036, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34878824

RESUMO

Glioblastoma (GBM) is a fatal tumor whose aggressiveness, heterogeneity, poor blood-brain barrier penetration, and resistance to therapy highlight the need for new targets and clinical treatments. A step toward clinical translation includes the eradication of GBM tumor-initiating cells (TICs), responsible for GBM heterogeneity and relapse. By using patient-derived TICs and xenograft orthotopic models, we demonstrated that the selective lysine-specific histone demethylase 1 inhibitor DDP_38003 (LSD1i) is able to penetrate the brain parenchyma in vivo in preclinical models, is well tolerated, and exerts antitumor activity in molecularly different GBMs. LSD1 genetic targeting further strengthens the role of LSD1 in GBM TIC maintenance. GBM TIC plasticity supports their adaptation and survival under a plethora of environmental stresses, including nutrient deficiency and proteostasis perturbation. By mimicking these stresses in vitro, we found that LSD1 inhibition hampers the induction of the activating transcription factor 4 (ATF4), the master regulator of the integrated stress response (ISR). The resulting aberrant ISR sensitizes GBM TICs to stress-induced cell death, hampering tumor aggressiveness. Functionally, LSD1i interferes with LSD1 scaffolding function and prevents its interaction with CREBBP, a critical ATF4 activator. By disrupting the interaction between CREBBP and LSD1-ATF4 axis, LSD1 inhibition prevents GBM TICs from overcoming stress and sustaining GBM progression. The effectiveness of the LSD1 inhibition in preclinical models shown here places a strong rationale toward its clinical translation for GBM treatment.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Fator 4 Ativador da Transcrição/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Histona Desmetilases/metabolismo , Humanos , Recidiva Local de Neoplasia/metabolismo , Células-Tronco Neoplásicas/patologia
5.
Theranostics ; 11(4): 1626-1640, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33408771

RESUMO

Colorectal cancer (CRC) cells are traditionally considered unresponsive to TGFß due to mutations in the receptors and/or downstream signaling molecules. TGFß influences CRC cells only indirectly via stromal cells, such as cancer-associated fibroblasts. However, CRC cell ability to directly respond to TGFß currently remains unexplored. This represents a missed opportunity for diagnostic and therapeutic interventions. Methods: We examined whether cancer cells from primary CRC and liver metastases respond to TGFß by inducing TGFß-induced protein ig-h3 (TGFBI) expression, and the contribution of canonical and non-canonical TGFß signaling pathways to this effect. We then investigated in vitro and in vivo TGFBI impact on metastasis formation and angiogenesis. Using patient serum samples and an orthotopic mouse model of CRC liver metastases we assessed the diagnostic/tumor targeting value of novel antibodies against TGFBI. Results: Metastatic CRC cells, such as circulating tumor cells, directly respond to TGFß. These cells were characterized by the absence of TGFß receptor mutations and the frequent presence of p53 mutations. The pro-tumorigenic program orchestrated by TGFß in CRC cells was mediated through TGFBI, the expression of which was positively regulated by non-canonical TGFß signaling cascades. TGFBI inhibition was sufficient to significantly reduce liver metastasis formation in vivo. Moreover, TGFBI pro-tumorigenic function was linked to its ability to stimulate angiogenesis. TGFBI levels were higher in serum samples from untreated patients with CRC than in patients who were receiving chemotherapy. A radiolabeled anti-TGFBI antibody selectively targeted metastatic lesions in vivo, underscoring its diagnostic and therapeutic potential. Conclusions: TGFß signaling in CRC cells directly contributes to their metastatic potential and stromal cell-independence. Proteins downstream of activated TGFß, such as TGFBI, represent novel diagnostic and therapeutic targets for more specific anti-metastatic therapies.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Colorretais/irrigação sanguínea , Proteínas da Matriz Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/irrigação sanguínea , Neovascularização Patológica/patologia , Fator de Crescimento Transformador beta/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Movimento Celular , Proliferação de Células , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Proteínas da Matriz Extracelular/genética , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/secundário , Camundongos , Neovascularização Patológica/metabolismo , Prognóstico , Transdução de Sinais , Fator de Crescimento Transformador beta/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Cell Rep ; 30(5): 1400-1416.e6, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-32023458

RESUMO

The use of cetuximab anti-epidermal growth factor receptor (anti-EGFR) antibodies has opened the era of targeted and personalized therapy in colorectal cancer (CRC). Poor response rates have been unequivocally shown in mutant KRAS and are even observed in a majority of wild-type KRAS tumors. Therefore, patient selection based on mutational profiling remains problematic. We previously identified methylglyoxal (MGO), a by-product of glycolysis, as a metabolite promoting tumor growth and metastasis. Mutant KRAS cells under MGO stress show AKT-dependent survival when compared with wild-type KRAS isogenic CRC cells. MGO induces AKT activation through phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin 2 (mTORC2) and Hsp27 regulation. Importantly, the sole induction of MGO stress in sensitive wild-type KRAS cells renders them resistant to cetuximab. MGO scavengers inhibit AKT and resensitize KRAS-mutated CRC cells to cetuximab in vivo. This study establishes a link between MGO and AKT activation and pinpoints this oncometabolite as a potential target to tackle EGFR-targeted therapy resistance in CRC.


Assuntos
Cetuximab/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Sequestradores de Radicais Livres/farmacologia , Mutação/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Aldeído Pirúvico/farmacologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Carnosina/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cetuximab/farmacologia , Células Clonais , Ativação Enzimática/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Glicosilação/efeitos dos fármacos , Proteínas de Choque Térmico HSP27/metabolismo , Humanos , Masculino , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Camundongos Endogâmicos NOD , Camundongos SCID , Pessoa de Meia-Idade , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Estresse Fisiológico/efeitos dos fármacos
7.
Cancers (Basel) ; 11(6)2019 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-31248212

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest malignancies with an overall survival of 5% and is the second cause of death by cancer, mainly linked to its high metastatic aggressiveness. Accordingly, understanding the mechanisms sustaining the PDAC metastatic phenotype remains a priority. In this study, we generated and used a murine in vivo model to select clones from the human Panc-1 PDAC cell line that exhibit a high propensity to seed and metastasize into the liver. We showed that myoferlin, a protein previously reported to be overexpressed in PDAC, is significantly involved in the migratory abilities of the selected cells. We first report that highly metastatic Panc-1 clones expressed a significantly higher myoferlin level than the corresponding low metastatic ones. Using scratch wound and Boyden's chamber assays, we show that cells expressing a high myoferlin level have higher migratory potential than cells characterized by a low myoferlin abundance. Moreover, we demonstrate that myoferlin silencing leads to a migration decrease associated with a reduction of mitochondrial respiration. Since mitochondrial oxidative phosphorylation has been shown to be implicated in the tumor progression and dissemination, our data identify myoferlin as a valid potential therapeutic target in PDAC.

8.
Oncogenesis ; 8(3): 21, 2019 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-30850580

RESUMO

Colon adenocarcinoma is the third most commonly diagnosed cancer and the second deadliest one. Metabolic reprogramming, described as an emerging hallmark of malignant cells, includes the predominant use of glycolysis to produce energy. Recent studies demonstrated that mitochondrial electron transport chain inhibitor reduced colon cancer tumour growth. Accumulating evidence show that myoferlin, a member of the ferlin family, is highly expressed in several cancer types, where it acts as a tumour promoter and participates in the metabolic rewiring towards oxidative metabolism. In this study, we showed that myoferlin expression in colon cancer lesions is associated with low patient survival and is higher than in non-tumoural adjacent tissue. Human colon cancer cells silenced for myoferlin exhibit a reduced oxidative phosphorylation activity associated with mitochondrial fission leading, ROS accumulation, decreased cell growth, and increased apoptosis. We observed the triggering of a DNA damage response culminating to a cell cycle arrest in wild-type p53 cells. The use of a p53 null cell line or a compound able to restore p53 activity (Prima-1) reverted the effects induced by myoferlin silencing, confirming the involvement of p53. The recent identification of a compound interacting with a myoferlin C2 domain and bearing anticancer potency identifies, together with our demonstration, this protein as a suitable new therapeutic target in colon cancer.

9.
Int J Cancer ; 145(6): 1570-1584, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30834519

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) remains a deadly malignancy with no efficient therapy available up-to-date. Glycolysis is the main provider of energetic substrates to sustain cancer dissemination of PDAC. Accordingly, altering the glycolytic pathway is foreseen as a sound approach to trigger pancreatic cancer regression. Here, we show for the first time that high transforming growth factor beta-induced (TGFBI) expression in PDAC patients is associated with a poor outcome. We demonstrate that, although usually secreted by stromal cells, PDAC cells synthesize and secrete TGFBI in quantity correlated with their migratory capacity. Mechanistically, we show that TGFBI activates focal adhesion kinase signaling pathway through its binding to integrin αVß5, leading to a significant enhancement of glycolysis and to the acquisition of an invasive phenotype. Finally, we show that TGFBI silencing significantly inhibits PDAC tumor development in a chick chorioallantoic membrane assay model. Our study highlights TGFBI as an oncogenic extracellular matrix interacting protein that bears the potential to serve as a target for new anti-PDAC therapeutic strategies.


Assuntos
Carcinoma Ductal Pancreático/patologia , Movimento Celular , Proteínas da Matriz Extracelular/metabolismo , Glicólise , Neoplasias Pancreáticas/patologia , Fator de Crescimento Transformador beta1/metabolismo , Animais , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral , Embrião de Galinha , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Inativação Gênica , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Pancreáticas/metabolismo , Receptores de Vitronectina/metabolismo , Transdução de Sinais , Frações Subcelulares/metabolismo , Análise de Sobrevida , Fator de Crescimento Transformador beta1/genética
10.
Oncogene ; 37(32): 4398-4412, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29720728

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is the third leading cause of cancer-related death. Therapeutic options remain very limited and are based on classical chemotherapies. Energy metabolism reprogramming appears as an emerging hallmark of cancer and is considered a therapeutic target with considerable potential. Myoferlin, a ferlin family member protein overexpressed in PDAC, is involved in plasma membrane biology and has a tumor-promoting function. In the continuity of our previous studies, we investigated the role of myoferlin in the context of energy metabolism in PDAC. We used selected PDAC tumor samples and PDAC cell lines together with small interfering RNA technology to study the role of myoferlin in energetic metabolism. In PDAC patients, we showed that myoferlin expression is negatively correlated with overall survival and with glycolytic activity evaluated by 18F-deoxyglucose positron emission tomography. We found out that myoferlin is more abundant in lipogenic pancreatic cancer cell lines and is required to maintain a branched mitochondrial structure and a high oxidative phosphorylation activity. The observed mitochondrial fission induced by myoferlin depletion led to a decrease of cell proliferation, ATP production, and autophagy induction, thus indicating an essential role of myoferlin for PDAC cell fitness. The metabolic phenotype switch generated by myoferlin silencing could open up a new perspective in the development of therapeutic strategies, especially in the context of energy metabolism.


Assuntos
Adenocarcinoma/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Proteínas Musculares/metabolismo , Neoplasias Pancreáticas/metabolismo , Adenocarcinoma/patologia , Trifosfato de Adenosina/metabolismo , Autofagia/fisiologia , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Metabolismo Energético/fisiologia , Regulação Neoplásica da Expressão Gênica/fisiologia , Glicólise/fisiologia , Humanos , Mitocôndrias/patologia , Fosforilação Oxidativa , Neoplasias Pancreáticas/patologia , RNA Interferente Pequeno/metabolismo
11.
Oncotarget ; 9(12): 10665-10680, 2018 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-29535834

RESUMO

The identification of diagnostic and prognostic biomarkers from early lesions, measurable in liquid biopsies remains a major challenge, particularly in oncology. Fresh human material of high quality is required for biomarker discovery but is often not available when it is totally required for clinical pathology investigation. Hence, all OMICs studies are done on residual and less clinically relevant biological samples. Here after, we present an innovative, simple, and non-destructive, procedure named EXPEL that uses rapid, pressure-assisted, interstitial fluid extrusion, preserving the specimen for full routine clinical pathology investigation. In the meantime, the technique allows a comprehensive OMICs analysis (proteins, metabolites, miRNAs and DNA). As proof of concept, we have applied EXPEL on freshly collected human colorectal cancer and liver metastases tissues. We demonstrate that the procedure efficiently allows the extraction, within a few minutes, of a wide variety of biomolecules holding diagnostic and prognostic potential while keeping both tissue morphology and antigenicity unaltered. Our method enables, for the first time, both clinicians and scientists to explore identical clinical material regardless of its origin and size, which has a major positive impact on translation to the clinic.

12.
Cancer Metastasis Rev ; 37(1): 125-145, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29392535

RESUMO

The discovery of biomarkers able to detect cancer at an early stage, to evaluate its aggressiveness, and to predict the response to therapy remains a major challenge in clinical oncology and precision medicine. In this review, we summarize recent achievements in the discovery and development of cancer biomarkers. We also highlight emerging innovative methods in biomarker discovery and provide insights into the challenges faced in their evaluation and validation.


Assuntos
Biomarcadores Tumorais , Neoplasias/diagnóstico , Neoplasias/terapia , Medicina de Precisão , Animais , Genômica/métodos , Humanos , Metabolômica , Neoplasias/genética , Neoplasias/metabolismo , Medicina de Precisão/métodos , Proteômica/métodos
13.
Oncogene ; 37(9): 1237-1250, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29242606

RESUMO

Cancer research is increasingly dependent of patient-derived xenograft model (PDX). However, a major point of concern regarding the PDX model remains the replacement of the human stroma with murine counterpart. In the present work we aimed at clarifying the significance of the human-to-murine stromal replacement for the fidelity of colorectal cancer (CRC) and liver metastasis (CRC-LM) PDX model. We have conducted a comparative metabolic analysis between 6 patient tumors and corresponding PDX across 4 generations. Metabolic signatures of cancer cells and stroma were measured separately by MALDI-imaging, while metabolite changes in entire tumors were quantified using mass spectrometry approach. Measurement of glucose metabolism was also conducted in vivo using [18F]-fluorodeoxyglucose (FDG) and positron emission tomography (PET). In CRC/CRC-LM PDX model, human stroma was entirely replaced at the second generation. Despite this change, MALDI-imaging demonstrated that the metabolic profiles of both stromal and cancer cells remained stable for at least four generations in comparison to the original patient material. On the tumor level, profiles of 86 water-soluble metabolites as well as 93 lipid mediators underlined the functional stability of the PDX model. In vivo PET measurement of glucose uptake (reflecting tumor glucose metabolism) supported the ex vivo observations. Our data show for the first time that CRC/CRC-LM PDX model maintains the functional stability at the metabolic level despite the early replacement of the human stroma by murine cells. The findings demonstrate that human cancer cells actively educate murine stromal cells during PDX development to adopt the human-like phenotype.


Assuntos
Fibroblastos Associados a Câncer/metabolismo , Neoplasias Colorretais/metabolismo , Modelos Animais de Doenças , Glucose/metabolismo , Neoplasias Hepáticas/metabolismo , Metaboloma , Células Estromais/metabolismo , Animais , Fibroblastos Associados a Câncer/patologia , Estudos de Coortes , Neoplasias Colorretais/patologia , Feminino , Humanos , Neoplasias Hepáticas/secundário , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Fenótipo , Células Estromais/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
14.
J Clin Med ; 6(1)2017 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-28067804

RESUMO

Transforming growth factor-ß (TGF-ß) is an intriguing cytokine exhibiting dual activities in malignant disease. It is an important mediator of cancer invasion, metastasis and angiogenesis, on the one hand, while it exhibits anti-tumor functions on the other hand. Elucidating the precise role of TGF-ß in malignant development and progression requires a better understanding of the molecular mechanisms involved in its tumor suppressor to tumor promoter switch. One important aspect of TGF-ß function is its interaction with proteins within the tumor microenvironment. Several stromal proteins have the natural ability to interact and modulate TGF-ß function. Understanding the complex interplay between the TGF-ß signaling network and these stromal proteins may provide greater insight into the development of novel therapeutic strategies that target the TGF-ß axis. The present review highlights our present understanding of how stroma modulates TGF-ß activity in human cancers.

15.
Oncotarget ; 7(50): 83669-83683, 2016 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-27845903

RESUMO

Exosomes are communication mediators participating in the intercellular exchange of proteins, metabolites and nucleic acids. Recent studies have demonstrated that exosomes are characterized by a unique proteomic composition that is distinct from the cellular one. The mechanisms responsible for determining the proteome content of the exosomes remain however obscure. In the current study we employ ultrastructural approach to validate a novel exosomal protein myoferlin. This is a multiple C2-domain containing protein, known for its conserved physiological function in endocytosis and vesicle fusion biology. Emerging studies demonstrate that myoferlin is frequently overexpressed in cancer, where it promotes cancer cell migration and invasion. Our data expand these findings by showing that myoferlin is a general component of cancer cell derived exosomes from different breast and pancreatic cancer cell lines. Using proteomic analysis, we demonstrate for the first time that myoferlin depletion in cancer cells leads to a significantly modulated exosomal protein load. Such myoferlin-depleted exosomes were also functionally deficient as shown by their reduced capacity to transfer nucleic acids to human endothelial cells (HUVEC). Beyond this, myoferlin-depleted cancer exosomes also had a significantly reduced ability to induce migration and proliferation of HUVEC. The present study highlights myoferlin as a new functional player in exosome biology, calling for novel strategies to target this emerging oncogene in human cancer.


Assuntos
Neoplasias da Mama/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Exossomos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Musculares/metabolismo , Neoplasias Pancreáticas/metabolismo , Western Blotting , Neoplasias da Mama/genética , Neoplasias da Mama/ultraestrutura , Proteínas de Ligação ao Cálcio/genética , Movimento Celular , Proliferação de Células , Exossomos/genética , Exossomos/ultraestrutura , Feminino , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Células MCF-7 , Masculino , Proteínas de Membrana/genética , Microscopia Eletrônica , Proteínas Musculares/genética , Neovascularização Fisiológica , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/ultraestrutura , Mapas de Interação de Proteínas , Proteômica/métodos , Interferência de RNA , Transdução de Sinais , Transfecção
16.
Elife ; 52016 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-27759563

RESUMO

Metabolic reprogramming toward aerobic glycolysis unavoidably induces methylglyoxal (MG) formation in cancer cells. MG mediates the glycation of proteins to form advanced glycation end products (AGEs). We have recently demonstrated that MG-induced AGEs are a common feature of breast cancer. Little is known regarding the impact of MG-mediated carbonyl stress on tumor progression. Breast tumors with MG stress presented with high nuclear YAP, a key transcriptional co-activator regulating tumor growth and invasion. Elevated MG levels resulted in sustained YAP nuclear localization/activity that could be reverted using Carnosine, a scavenger for MG. MG treatment affected Hsp90 chaperone activity and decreased its binding to LATS1, a key kinase of the Hippo pathway. Cancer cells with high MG stress showed enhanced growth and metastatic potential in vivo. These findings reinforce the cumulative evidence pointing to hyperglycemia as a risk factor for cancer incidence and bring renewed interest in MG scavengers for cancer treatment.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias da Mama/patologia , Produtos Finais de Glicação Avançada/metabolismo , Glicólise , Proteínas de Choque Térmico HSP90/metabolismo , Metástase Neoplásica , Fosfoproteínas/metabolismo , Aldeído Pirúvico/metabolismo , Aerobiose , Neoplasias da Mama/fisiopatologia , Linhagem Celular Tumoral , Proliferação de Células , Glicosilação , Humanos , Processamento de Proteína Pós-Traducional , Fatores de Transcrição , Proteínas de Sinalização YAP
17.
PLoS Med ; 12(9): e1001871, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26327350

RESUMO

BACKGROUND: Breast cancer is a leading malignancy affecting the female population worldwide. Most morbidity is caused by metastases that remain incurable to date. TGF-ß1 has been identified as a key driving force behind metastatic breast cancer, with promising therapeutic implications. METHODS AND FINDINGS: Employing immunohistochemistry (IHC) analysis, we report, to our knowledge for the first time, that asporin is overexpressed in the stroma of most human breast cancers and is not expressed in normal breast tissue. In vitro, asporin is secreted by breast fibroblasts upon exposure to conditioned medium from some but not all human breast cancer cells. While hormone receptor (HR) positive cells cause strong asporin expression, triple-negative breast cancer (TNBC) cells suppress it. Further, our findings show that soluble IL-1ß, secreted by TNBC cells, is responsible for inhibiting asporin in normal and cancer-associated fibroblasts. Using recombinant protein, as well as a synthetic peptide fragment, we demonstrate the ability of asporin to inhibit TGF-ß1-mediated SMAD2 phosphorylation, epithelial to mesenchymal transition, and stemness in breast cancer cells. In two in vivo murine models of TNBC, we observed that tumors expressing asporin exhibit significantly reduced growth (2-fold; p = 0.01) and metastatic properties (3-fold; p = 0.045). A retrospective IHC study performed on human breast carcinoma (n = 180) demonstrates that asporin expression is lowest in TNBC and HER2+ tumors, while HR+ tumors have significantly higher asporin expression (4-fold; p = 0.001). Assessment of asporin expression and patient outcome (n = 60; 10-y follow-up) shows that low protein levels in the primary breast lesion significantly delineate patients with bad outcome regardless of the tumor HR status (area under the curve = 0.87; 95% CI 0.78-0.96; p = 0.0001). Survival analysis, based on gene expression (n = 375; 25-y follow-up), confirmed that low asporin levels are associated with a reduced likelihood of survival (hazard ratio = 0.58; 95% CI 0.37-0.91; p = 0.017). Although these data highlight the potential of asporin to serve as a prognostic marker, confirmation of the clinical value would require a prospective study on a much larger patient cohort. CONCLUSIONS: Our data show that asporin is a stroma-derived inhibitor of TGF-ß1 and a tumor suppressor in breast cancer. High asporin expression is significantly associated with less aggressive tumors, stratifying patients according to the clinical outcome. Future pre-clinical studies should consider options for increasing asporin expression in TNBC as a promising strategy for targeted therapy.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/farmacologia , Animais , Biomarcadores Tumorais/metabolismo , Western Blotting , Ensaio de Imunoadsorção Enzimática , Feminino , Fatores de Crescimento de Fibroblastos/metabolismo , Fatores de Crescimento de Fibroblastos/farmacologia , Fibroblastos/metabolismo , Regulação Neoplásica da Expressão Gênica , Xenoenxertos , Humanos , Interleucina-1beta/farmacologia , Camundongos , Pessoa de Meia-Idade , Prognóstico , Reação em Cadeia da Polimerase em Tempo Real , Estudos Retrospectivos , Análise de Sobrevida , Fator de Crescimento Transformador beta/farmacologia , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA