Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Antibodies (Basel) ; 13(1)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38534207

RESUMO

IgG Fc N-glycosylation is necessary for effector functions and is an important component of quality control. The choice of antibody manufacturing platform has the potential to significantly influence the Fc glycans of an antibody and consequently alter their activity and clinical profile. The Human Contraception Antibody (HCA) is an IgG1 antisperm monoclonal antibody (mAb) currently in clinical development as a novel, non-hormonal contraceptive. Part of its development is selecting a suitable expression platform to manufacture HCA for use in the female reproductive tract. Here, we compared the Fc glycosylation of HCA produced in two novel mAb manufacturing platforms, namely transgenic tobacco plants (Nicotiana benthamiana; HCA-N) and mRNA-mediated expression in human vaginal cells (HCAmRNA). The Fc N-glycan profiles of the two HCA products were determined using mass spectrometry. Major differences in site occupancy, glycan types, and glycoform distributions were revealed. To address how these differences affect Fc function, antibody-dependent cellular phagocytosis (ADCP) assays were performed. The level of sperm phagocytosis was significantly lower in the presence of HCA-N than HCAmRNA. This study provides evidence that the two HCA manufacturing platforms produce functionally distinct HCAs; this information could be useful for the selection of an optimal platform for HCA clinical development and for mAbs in general.

2.
Anal Chem ; 96(3): 1251-1258, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38206681

RESUMO

Glycosylation is widely recognized as the most complex post-translational modification due to the widespread presence of macro- and microheterogeneities, wherein its biological consequence is closely related to both the glycosylation sites and the glycan fine structures. Yet, efficient site-specific detailed glycan characterization remains a significant analytical challenge. Here, utilizing an Orbitrap-Omnitrap platform, higher-energy electron-activated dissociation (heExD) tandem mass spectrometry (MS/MS) revealed extraordinary efficacy for the structural characterization of intact glycopeptides. HeExD produced extensive fragmentation within both the glycan and the peptide, including A-/B-/C-/Y-/Z-/X-ions from the glycan motif and a-/b-/c-/x-/y-/z-type peptide fragments (with or without the glycan). The intensity of cross-ring cleavage and backbone fragments retaining the intact glycan was highly dependent on the electron energy. Among the four electron energy levels investigated, electronic excitation dissociation (EED) provided the most comprehensive structural information, yielding a complete series of glycosidic fragments for accurate glycan topology determination, a wealth of cross-ring fragments for linkage definition, and the most extensive peptide backbone fragments for accurate peptide sequencing and glycosylation site localization. The glycan fragments observed in the EED spectrum correlated well with the fragmentation patterns observed in EED MS/MS of the released glycans. The advantages of EED over higher-energy collisional dissociation (HCD), stepped collision energy HCD (sceHCD), and electron-transfer/higher-energy collisional dissociation (EThcD) were demonstrated for the characterization of a glycopeptide bearing a biantennary disialylated glycan. EED can produce a complete peptide backbone and glycan sequence coverage even for doubly protonated precursors. The exceptional performance of heExD MS/MS, particularly EED MS/MS, in site-specific detailed glycan characterization on an Orbitrap-Omnitrap hybrid instrument presents a novel option for in-depth glycosylation analysis.


Assuntos
Glicopeptídeos , Espectrometria de Massas em Tandem , Glicopeptídeos/análise , Espectrometria de Massas em Tandem/métodos , Elétrons , Peptídeos/química , Polissacarídeos/química
3.
J Clin Invest ; 133(17)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37471146

RESUMO

BACKGROUNDAutoimmune diseases often have strong genetic associations with specific HLA-DR alleles. The synovial lesion in chronic inflammatory forms of arthritis shows marked upregulation of HLA-DR molecules, including in postinfectious Lyme arthritis (LA). However, the identity of HLA-DR-presented peptides, and therefore the reasons for these associations, has frequently remained elusive.METHODSUsing immunopeptidomics to detect HLA-DR-presented peptides from synovial tissue, we identified T cell epitopes from 3 extracellular matrix (ECM) proteins in patients with postinfectious LA, identified potential Borreliella burgdorferi-mimic (Bb-mimic) epitopes, and characterized T and B cell responses to these peptides or proteins.RESULTSOf 24 postinfectious LA patients, 58% had CD4+ T cell responses to at least 1 epitope of 3 ECM proteins, fibronectin-1, laminin B2, and/or collagen Vα1, and 17% of 52 such patients had antibody responses to at least 1 of these proteins. Patients with autoreactive T cell responses had significantly increased frequencies of HLA-DRB1*04 or -DRB1*1501 alleles and more prolonged arthritis. When tetramer reagents were loaded with ECM or corresponding Bb-mimic peptides, binding was only with the autoreactive T cells. A high percentage of ECM-autoreactive CD4+ T cells in synovial fluid were T-bet-expressing Th1 cells, a small percentage were RoRγt-expressing Th17 cells, and a minimal percentage were FoxP3-expressing Tregs.CONCLUSIONAutoreactive, proinflammatory CD4+ T cells and autoantibodies develop to ECM proteins in a subgroup of postinfectious LA patients who have specific HLA-DR alleles. Rather than the traditional molecular mimicry model, we propose that epitope spreading provides the best explanation for this example of infection-induced autoimmunity.FUNDINGSupported by National Institute of Allergy and Infectious Diseases R01-AI101175, R01-AI144365, and F32-AI125764; National Institute of Arthritis and Musculoskeletal and Skin Diseases K01-AR062098 and T32-AR007258; NIH grants P41-GM104603, R24-GM134210, S10-RR020946, S10-OD010724, S10-OD021651, and S10-OD021728; and the G. Harold and Leila Y. Mathers Foundation, the Eshe Fund, and the Lyme Disease and Arthritis Research Fund at Massachusetts General Hospital.


Assuntos
Artrite , Borrelia burgdorferi , Doença de Lyme , Humanos , Autoimunidade , Proteínas da Matriz Extracelular , Cadeias HLA-DRB1 , Peptídeos , Epitopos de Linfócito T
4.
JACS Au ; 2(7): 1686-1698, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35911443

RESUMO

FtmOx1 is a nonheme iron (NHFe) endoperoxidase, catalyzing three disparate reactions, endoperoxidation, alcohol dehydrogenation, and dealkylation, under in vitro conditions; the diversity complicates its mechanistic studies. In this study, we use two substrate analogues to simplify the FtmOx1-catalyzed reaction to either a dealkylation or an alcohol dehydrogenation reaction for structure-function relationship analysis to address two key FtmOx1 mechanistic questions: (1) Y224 flipping in the proposed COX-like model vs α-ketoglutarate (αKG) rotation proposed in the CarC-like mechanistic model and (2) the involvement of a Y224 radical (COX-like model) or a Y68 radical (CarC-like model) in FtmOx1-catalysis. When 13-oxo-fumitremorgin B (7) is used as the substrate, FtmOx1-catalysis changes from the endoperoxidation to a hydroxylation reaction and leads to dealkylation. In addition, consistent with the dealkylation side-reaction in the COX-like model prediction, the X-ray structure of the FtmOx1•CoII•αKG•7 ternary complex reveals a flip of Y224 to an alternative conformation relative to the FtmOx1•FeII•αKG binary complex. Verruculogen (2) was used as a second substrate analogue to study the alcohol dehydrogenation reaction to examine the involvement of the Y224 radical or Y68 radical in FtmOx1-catalysis, and again, the results from the verruculogen reaction are more consistent with the COX-like model.

5.
Mol Cell Proteomics ; 21(4): 100213, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35182768

RESUMO

Primary myelofibrosis (PMF) is a neoplasm prone to leukemic transformation, for which limited treatment is available. Among individuals diagnosed with PMF, the most prevalent mutation is the JAK2V617F somatic point mutation that activates the Janus kinase 2 (JAK2) enzyme. Our earlier reports on hyperactivity of ß1 integrin and enhanced adhesion activity of the α2ß1 complex in JAK2V617F megakaryocytes (MKs) led us to examine the new hypothesis that this mutation leads to posttranslational modification via changes in glycosylation. Samples were derived from immunoprecipitation of MKs obtained from Vav1-hJAK2V617F and WT mice. Immunoprecipitated fractions were separated by SDS-PAGE and analyzed using LC-MS/MS techniques in a bottom-up glycoproteomics workflow. In the immunoprecipitate, glycopeptiforms corresponding to 11 out of the 12 potential N-glycosylation sites of integrin ß1 and to all nine potential glycosylation sites of integrin α2 were observed. Glycopeptiforms were compared across WT and JAK2V617F phenotypes for both integrins. The overall trend observed is that JAK2V617F mutation in PMF MKs leads to changes in ß1 glycosylation; in most cases, it results in an increase in the integrated area of glycopeptiforms. We also observed that in mutated MKs, changes in integrin α2 glycosylation were more substantial than those observed for integrin ß1 glycosylation, a finding that suggests that altered integrin α2 glycosylation may also affect activation. Additionally, the identification of proteins associated to the cytoskeleton that were co-immunoprecipitated with integrins α2 and ß1 demonstrated the potential of the methodology employed in this study to provide some insight, at the peptide level, into the consequences of integrin activation in MKs. The extensive and detailed glycosylation patterns we uncovered provide a basis for future functional studies of each site in control cells as compared to JAK2V617F-mutated cells. Data are available via ProteomeXchange with identifier PXD030550.


Assuntos
Janus Quinase 2/genética , Megacariócitos , Mielofibrose Primária , Animais , Cromatografia Líquida , Integrina alfa2/genética , Integrina alfa2/metabolismo , Integrina beta1/genética , Integrina beta1/metabolismo , Megacariócitos/metabolismo , Camundongos , Mutação , Mielofibrose Primária/diagnóstico , Mielofibrose Primária/genética , Espectrometria de Massas em Tandem
6.
J Biomed Sci ; 28(1): 61, 2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34503512

RESUMO

BACKGROUND: The cell adhesion molecule transmembrane and immunoglobulin (Ig) domain containing1 (TMIGD1) is a novel tumor suppressor that plays important roles in regulating cell-cell adhesion, cell proliferation and cell cycle. However, the mechanisms of TMIGD1 signaling are not yet fully elucidated. RESULTS: TMIGD1 binds to the ERM family proteins moesin and ezrin, and an evolutionarily conserved RRKK motif on the carboxyl terminus of TMIGD1 mediates the interaction of TMIGD1 with the N-terminal ERM domains of moesin and ezrin. TMIGD1 governs the apical localization of moesin and ezrin, as the loss of TMIGD1 in mice altered apical localization of moesin and ezrin in epithelial cells. In cell culture, TMIGD1 inhibited moesin-induced filopodia-like protrusions and cell migration. More importantly, TMIGD1 stimulated the Lysine (K40) acetylation of α-tubulin and promoted mitotic spindle organization and CRISPR/Cas9-mediated knockout of moesin impaired the TMIGD1-mediated acetylation of α-tubulin and filamentous (F)-actin organization. CONCLUSIONS: TMIGD1 binds to moesin and ezrin, and regulates their cellular localization. Moesin plays critical roles in TMIGD1-dependent acetylation of α-tubulin, mitotic spindle organization and cell migration. Our findings offer a molecular framework for understanding the complex functional interplay between TMIGD1 and the ERM family proteins in the regulation of cell adhesion and mitotic spindle assembly, and have wide-ranging implications in physiological and pathological processes such as cancer progression.


Assuntos
Movimento Celular , Glicoproteínas de Membrana/genética , Proteínas dos Microfilamentos/genética , Tubulina (Proteína)/metabolismo , Acetilação , Animais , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos/metabolismo
9.
FASEB J ; 34(8): 10191-10211, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32557809

RESUMO

Osteocytes, the bone cells embedded in the mineralized matrix, control bone modeling, and remodeling through direct contact with adjacent cells and via paracrine and endocrine factors that affect cells in the bone marrow microenvironment or distant organs. Osteocytes express numerous G protein-coupled receptors (GPCRs) and thus mice lacking the stimulatory subunit of G-protein (Gsα) in osteocytes (Dmp1-GsαKO mice) have abnormal myelopoiesis, osteopenia, and reduced adipose tissue. We previously reported that the severe osteopenia and the changes in adipose tissue present in these mice were mediated by increased sclerostin, which suppress osteoblast functions and promote browning of white adipocytes. Inversely, the myeloproliferation was driven by granulocyte colony-stimulating factor (G-CSF) and administration of neutralizing antibodies against G-CSF only partially restored the myeloproliferation, suggesting that additional osteocyte-derived factors might be involved. We hypothesized that osteocytes secrete Gsα-dependent factor(s) which regulate the myeloid cells proliferation. To identify osteocyte-secreted proteins, we used the osteocytic cell line Ocy454 expressing or lacking Gsα expression (Ocy454-Gsαcont and Ocy454-GsαKO ) to delineate the osteocyte "secretome" and its regulation by Gsα. Here we reported that factors secreted by osteocytes increased the number of myeloid colonies and promoted macrophage proliferation. The proliferation of myeloid cells was further promoted by osteocytes lacking Gsα expression. Myeloid cells can differentiate into bone-resorbing osteoclasts, therefore, we hypothesized that osteocyte-secreted factors might also regulate osteoclastogenesis in a Gsα-dependent manner. Conditioned medium (CM) from Ocy454 (both Gsαcont and GsαKO ) significanlty increased the proliferation of bone marrow mononuclear cells (BMNC) and, at the same time, inhibited their differentiation into mature osteoclasts via a Gsα-dependent mechanism. Proteomics analysis of CM from Ocy454 Gsαcont and GsαKO cells identified neuropilin-1 (Nrp-1) and granulin (Grn) as osteocytic-secreted proteins upregulated in Ocy454-GsαKO cells compared to Ocy454-Gsαcont , whereas semaphorin3A was significantly suppressed. Treatment of Ocy454-Gsαcont cells with recombinant proteins or knockdown of Nrp-1 and Grn in Ocy454-GsαKO cells partially rescued the inhibition of osteoclasts, demonstrating that osteocytes control osteoclasts differentiation through Nrp-1 and Grn which are regulated by Gsα signaling.


Assuntos
Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Células Mieloides/metabolismo , Células Mieloides/fisiologia , Osteócitos/metabolismo , Osteócitos/fisiologia , Animais , Doenças Ósseas Metabólicas/metabolismo , Doenças Ósseas Metabólicas/fisiopatologia , Medula Óssea/metabolismo , Medula Óssea/fisiologia , Reabsorção Óssea/metabolismo , Reabsorção Óssea/fisiopatologia , Linhagem Celular , Meios de Cultivo Condicionados/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mielopoese/fisiologia , Osteoclastos/metabolismo , Osteoclastos/fisiologia , Osteogênese/fisiologia , Transdução de Sinais/fisiologia
10.
Mol Omics ; 16(3): 195-209, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32203567

RESUMO

Epidermal growth factor receptor (EGFR) is a major driver of head and neck cancer, a devastating malignancy with a major sub-site in the oral cavity manifesting as oral squamous cell carcinoma (OSCC). EGFR is a glycoprotein receptor tyrosine kinase (RTK) whose activity is upregulated in >80% OSCC. Current anti-EGFR therapy relies on the use of cetuximab, a monoclonal antibody against EGFR, although it has had only a limited response in patients. Here, we uncover a novel mechanism regulating EGFR activity, identifying a role of the nuclear branch of the Wnt/ß-catenin signaling pathway, the ß-catenin/CBP axis, in control of post-translational modification of N-glycans on the EGFR. Genomic and structural analyses reveal that ß-catenin/CBP signaling represses fucosylation on the antennae of N-linked glycans on EGFR. By employing nUPLC-MS/MS, we determined that malignant human OSCC cells harbor EGFR with a paucity of N-glycan antennary fucosylation, while indolent cells display higher levels of fucosylation at sites N420 and N579. Additionally, treatment with either ICG-001 or E7386, which are both small molecule inhibitors of ß-catenin/CBP signaling, leads to increased transcriptional expression of fucosyltransferases FUT2 and FUT3, with a concomitant increase in EGFR N-glycan antennary fucosylation. In order to discover which fucosylated glycan epitopes are involved in the observed effect, we performed in-depth characterization of multiply-fucosylated N-glycans via tandem mass spectrometry analysis of the EGFR tryptic glycopeptides. Data are available via ProteomeXchange with identifier PXD017060. We propose that ß-catenin/CBP signaling promotes EGFR oncogenic activity in OSCC by inhibiting its N-glycan antennary fucosylation through transcriptional repression of FUT2 and FUT3.


Assuntos
Carcinoma de Células Escamosas/tratamento farmacológico , Fucose/metabolismo , Fucosiltransferases/genética , Neoplasias Bucais/tratamento farmacológico , Bibliotecas de Moléculas Pequenas/administração & dosagem , Animais , Sítios de Ligação , Compostos Bicíclicos Heterocíclicos com Pontes/administração & dosagem , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Proteína de Ligação a CREB/metabolismo , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Receptores ErbB/química , Receptores ErbB/metabolismo , Fucosiltransferases/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Modelos Moleculares , Neoplasias Bucais/genética , Neoplasias Bucais/metabolismo , Metástase Neoplásica , Polissacarídeos/metabolismo , Estrutura Terciária de Proteína , Pirimidinonas/administração & dosagem , Pirimidinonas/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , beta Catenina/metabolismo , Galactosídeo 2-alfa-L-Fucosiltransferase
11.
FASEB J ; 33(12): 14147-14158, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31647879

RESUMO

Glutaredoxin-1 (Glrx) is a small cytosolic enzyme that removes S-glutathionylation, glutathione adducts of protein cysteine residues, thus modulating redox signaling and gene transcription. Although Glrx up-regulation prevented endothelial cell (EC) migration and global Glrx transgenic mice had impaired ischemic vascularization, the effects of cell-specific Glrx overexpression remained unknown. Here, we examined the role of EC-specific Glrx up-regulation in distinct models of angiogenesis; namely, hind limb ischemia and tumor angiogenesis. EC-specific Glrx transgenic (EC-Glrx TG) overexpression in mice significantly impaired EC migration in Matrigel implants and hind limb revascularization after femoral artery ligation. Additionally, ECs migrated less into subcutaneously implanted B16F0 melanoma tumors as assessed by decreased staining of EC markers. Despite reduced angiogenesis, EC-Glrx TG mice unexpectedly developed larger tumors compared with control mice. EC-Glrx TG mice showed higher levels of VEGF-A in the tumors, indicating hypoxia, which may stimulate tumor cells to form vascular channels without EC, referred to as vasculogenic mimicry. These data suggest that impaired ischemic vascularization does not necessarily associate with suppression of tumor growth, and that antiangiogenic therapies may be ineffective for melanoma tumors because of their ability to implement vasculogenic mimicry during hypoxia.-Yura, Y., Chong, B. S. H., Johnson, R. D., Watanabe, Y., Tsukahara, Y., Ferran, B., Murdoch, C. E., Behring, J. B., McComb, M. E., Costello, C. E., Janssen-Heininger, Y. M. W., Cohen, R. A., Bachschmid, M. M., Matsui, R. Endothelial cell-specific redox gene modulation inhibits angiogenesis but promotes B16F0 tumor growth in mice.


Assuntos
Células Endoteliais/metabolismo , Glutarredoxinas/metabolismo , Melanoma/tratamento farmacológico , Neovascularização Patológica/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Animais , Feminino , Artéria Femoral/cirurgia , Glutarredoxinas/genética , Membro Posterior/irrigação sanguínea , Membro Posterior/cirurgia , Isquemia , Ligadura , Masculino , Camundongos , Camundongos Transgênicos , Neoplasias Experimentais
12.
J Biol Chem ; 294(35): 13117-13130, 2019 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-31308178

RESUMO

The tumor microenvironment and proinflammatory signals significantly alter glycosylation of cell-surface proteins on endothelial cells. By altering the N-glycosylation machinery in the endoplasmic reticulum and Golgi, proinflammatory cytokines promote the modification of endothelial glycoproteins such as vascular endothelial growth factor receptor 2 (VEGFR2) with sialic acid-capped N-glycans. VEGFR2 is a highly N-glycosylated receptor tyrosine kinase involved in pro-angiogenic signaling in physiological and pathological contexts, including cancer. Here, using glycoside hydrolase and kinase assays and immunoprecipitation and MS-based analyses, we demonstrate that N-linked glycans at the Asn-247 site in VEGFR2 hinder VEGF ligand-mediated receptor activation and signaling in endothelial cells. We provide evidence that cell surface-associated VEGFR2 displays sialylated N-glycans at Asn-247 and, in contrast, that the nearby sites Asn-145 and Asn-160 contain lower levels of sialylated N-glycans and higher levels of high-mannose N-glycans, respectively. Furthermore, we report that VEGFR2 Asn-247-linked glycans capped with sialic acid oppose ligand-mediated VEGFR2 activation, whereas the uncapped asialo-glycans favor activation of this receptor. We propose that N-glycosylation, specifically the capping of N-glycans at Asn-247 by sialic acid, tunes ligand-dependent activation and signaling of VEGFR2 in endothelial cells.


Assuntos
Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Linhagem Celular , Glicosilação , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Ligantes , Polissacarídeos/química , Polissacarídeos/metabolismo , Transdução de Sinais , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/química
13.
Cells ; 8(6)2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-31195728

RESUMO

Just as oncogene activation and tumor suppressor loss are hallmarks of tumor development, emerging evidence indicates that tumor microenvironment-mediated changes in glycosylation play a crucial functional role in tumor progression and metastasis. Hypoxia and inflammatory events regulate protein glycosylation in tumor cells and associated stromal cells in the tumor microenvironment, which facilitates tumor progression and also modulates a patient's response to anti-cancer therapeutics. In this review, we highlight the impact of altered glycosylation on angiogenic signaling and endothelial cell adhesion, and the critical consequences of these changes in tumor behavior.


Assuntos
Neoplasias/patologia , Neovascularização Patológica , Microambiente Tumoral , Moléculas de Adesão Celular/metabolismo , Células Endoteliais/metabolismo , Glicosilação , Humanos , Metástase Neoplásica , Neoplasias/irrigação sanguínea , Transdução de Sinais
14.
PLoS Negl Trop Dis ; 13(5): e0007352, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31095564

RESUMO

BACKGROUND: Acanthamoeba castellanii, which causes keratitis and blindness in under-resourced countries, is an emerging pathogen worldwide, because of its association with contact lens use. The wall makes cysts resistant to sterilizing reagents in lens solutions and to antibiotics applied to the eye. METHODOLOGY/PRINCIPAL FINDINGS: Transmission electron microscopy and structured illumination microscopy (SIM) showed purified cyst walls of A. castellanii retained an outer ectocyst layer, an inner endocyst layer, and conical ostioles that connect them. Mass spectrometry showed candidate cyst wall proteins were dominated by three families of lectins (named here Jonah, Luke, and Leo), which bound well to cellulose and less well to chitin. An abundant Jonah lectin, which has one choice-of-anchor A (CAA) domain, was made early during encystation and localized to the ectocyst layer of cyst walls. An abundant Luke lectin, which has two carbohydrate-binding modules (CBM49), outlined small, flat ostioles in a single-layered primordial wall and localized to the endocyst layer and ostioles of mature walls. An abundant Leo lectin, which has two unique domains with eight Cys residues each (8-Cys), localized to the endocyst layer and ostioles. The Jonah lectin and glycopolymers, to which it binds, were accessible in the ectocyst layer. In contrast, Luke and Leo lectins and the glycopolymers, to which they bind, were mostly inaccessible in the endocyst layer and ostioles. CONCLUSIONS/SIGNIFICANCE: The most abundant A. castellanii cyst wall proteins are three sets of lectins, which have carbohydrate-binding modules that are conserved (CBM49s of Luke), newly characterized (CAA of Jonah), or unique to Acanthamoebae (8-Cys of Leo). Cyst wall formation is a tightly choreographed event, in which lectins and glycopolymers combine to form a mature wall with a protected endocyst layer. Because of its accessibility in the ectocyst layer, an abundant Jonah lectin is an excellent diagnostic target.


Assuntos
Acanthamoeba castellanii/crescimento & desenvolvimento , Acanthamoeba castellanii/metabolismo , Amebíase/parasitologia , Celulose/metabolismo , Lectinas/metabolismo , Proteínas de Protozoários/metabolismo , Acanthamoeba castellanii/química , Acanthamoeba castellanii/genética , Sequência de Aminoácidos , Humanos , Ceratite/parasitologia , Lectinas/química , Lectinas/genética , Estágios do Ciclo de Vida , Ligação Proteica , Transporte Proteico , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Alinhamento de Sequência
15.
Redox Biol ; 22: 101150, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30877853

RESUMO

Sirtuin-1 (SirT1) catalyzes NAD+-dependent protein lysine deacetylation and is a critical regulator of energy and lipid metabolism, mitochondrial biogenesis, apoptosis, and senescence. Activation of SirT1 mitigates metabolic perturbations associated with diabetes and obesity. Pharmacologic molecules, cellular redox, and nutritional states can regulate SirT1 activity. Technical barriers against measuring endogenous SirT1 activity have limited characterization of SirT1 in disease and its activation by small molecules. Herein, we developed a relative quantitative mass spectrometry-based technique for measuring endogenous SirT1 activity (RAMSSAY/RelAtive Mass Spectrometry Sirt1 Activity assaY) in cell and tissue homogenates using a biotin-labeled, acetylated p53-derived peptide as a substrate. We demonstrate that oxidative and metabolic stress diminish SirT1 activity in the hepatic cell line HepG2. Moreover, pharmacologic molecules including nicotinamide and EX-527 attenuate SirT1 activity; purported activators of SirT1, the polyphenol S17834, the polyphenol resveratrol, or the non-polyphenolic Sirtris compound SRT1720, failed to activate endogenous SirT1 significantly. Furthermore, we provide evidence that feeding a high fat high sucrose diet (HFHS) to mice inhibits endogenous SirT1 activity in mouse liver. In summary, we introduce a robust, specific and sensitive mass spectrometry-based assay for detecting and quantifying endogenous SirT1 activity using a biotin-labeled peptide in cell and tissue lysates. With this assay, we determine how pharmacologic molecules and metabolic and oxidative stress regulate endogenous SirT1 activity. The assay may also be adapted for other sirtuin isoforms.


Assuntos
Espectrometria de Massas , Metabolômica , Estresse Oxidativo , Sirtuína 1/metabolismo , Estresse Fisiológico , Animais , Antineoplásicos/farmacologia , Descoberta de Drogas , Ativação Enzimática/efeitos dos fármacos , Células Hep G2 , Humanos , Masculino , Metabolômica/métodos , Camundongos , Camundongos Transgênicos , Estresse Oxidativo/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos
16.
Cell Chem Biol ; 25(5): 519-529.e4, 2018 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-29503207

RESUMO

Sulfur incorporation in the biosynthesis of ergothioneine, a histidine thiol derivative, differs from other well-characterized transsulfurations. A combination of a mononuclear non-heme iron enzyme-catalyzed oxidative C-S bond formation and a subsequent pyridoxal 5'-phosphate (PLP)-mediated C-S lyase reaction leads to the net transfer of a sulfur atom from a cysteine to a histidine. In this study, we structurally and mechanistically characterized a PLP-dependent C-S lyase Egt2, which mediates the sulfoxide C-S bond cleavage in ergothioneine biosynthesis. A cation-π interaction between substrate and enzyme accounts for Egt2's preference of sulfoxide over thioether as a substrate. Using mutagenesis and structural biology, we captured three distinct states of the Egt2 C-S lyase reaction cycle, including a labile sulfenic intermediate captured in Egt2 crystals. Chemical trapping and high-resolution mass spectrometry were used to confirm the involvement of the sulfenic acid intermediate in Egt2 catalysis.


Assuntos
Ergotioneína/metabolismo , Proteínas Fúngicas/metabolismo , Liases/metabolismo , Neurospora crassa/metabolismo , Vias Biossintéticas , Domínio Catalítico , Cristalografia por Raios X , Proteínas Fúngicas/química , Liases/química , Neurospora crassa/química , Conformação Proteica , Fosfato de Piridoxal/metabolismo , Especificidade por Substrato , Ácidos Sulfênicos/metabolismo
17.
J Mol Cell Biol ; 10(3): 195-204, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29329397

RESUMO

Intrinsically disordered proteins (IDPs)/intrinsically unstructured proteins are characterized by the lack of fixed or stable tertiary structure, and are increasingly recognized as an important class of proteins with major roles in signal transduction and transcriptional regulation. In this study, we report the identification and functional characterization of a previously uncharacterized protein (UPF0258/KIAA1024), major intrinsically disordered Notch2-associated receptor 1 (MINAR1). While MINAR1 carries a single transmembrane domain and a short cytoplasmic domain, it has a large extracellular domain that shares no similarity with known protein sequences. Uncharacteristically, MINAR1 is a highly IDP with nearly 70% of its amino acids sequences unstructured. We demonstrate that MINAR1 physically interacts with Notch2 and its binding to Notch2 increases its stability and function. MINAR1 is widely expressed in various tissues including the epithelial cells of the breast and endothelial cells of blood vessels. MINAR1 plays a negative role in angiogenesis as it inhibits angiogenesis in cell culture and in mouse matrigel plug and zebrafish angiogenesis models. Furthermore, while MINAR1 is highly expressed in the normal human breast, its expression is significantly downregulated in advanced human breast cancer and its re-expression in breast cancer cells inhibited tumor growth. Our study demonstrates that MINAR1 is an IDP that negatively regulates angiogenesis and growth of breast cancer cells.


Assuntos
Neoplasias da Mama/metabolismo , Proteínas Intrinsicamente Desordenadas/metabolismo , Neovascularização Patológica/metabolismo , Receptor Notch2/metabolismo , Receptores de Superfície Celular/metabolismo , Sequência de Aminoácidos , Animais , Neoplasias da Mama/patologia , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Células HEK293 , Humanos , Proteínas Intrinsicamente Desordenadas/análise , Camundongos , Neovascularização Patológica/patologia , Neovascularização Fisiológica , Domínios Proteicos , Mapas de Interação de Proteínas , Receptor Notch2/análise , Receptores de Superfície Celular/análise , Suínos , Peixe-Zebra
18.
J Proteome Res ; 16(9): 3147-3157, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28695742

RESUMO

Ki-1/57 is a nuclear and cytoplasmic regulatory protein first identified in malignant cells from Hodgkin's lymphoma. It is involved in gene expression regulation on both transcriptional and mRNA metabolism levels. Ki-1/57 belongs to the family of intrinsically unstructured proteins and undergoes phosphorylation by PKC and methylation by PRMT1. Previous characterization of its protein interaction profile by yeast two-hybrid screening showed that Ki-1/57 interacts with proteins of the SUMOylation machinery, the SUMO E2 conjugating enzyme UBC9 and the SUMO E3 ligase PIAS3, which suggested that Ki-1/57 could be involved with this process. Here we identified seven potential SUMO target sites (lysine residues) on Ki-1/57 sequence and observed that Ki-1/57 is modified by SUMO proteins in vitro and in vivo. We showed that SUMOylation of Ki-1/57 occurred on lysines 213, 276, and 336. In transfected cells expressing FLAG-Ki-1/57 wild-type, its paralog FLAG-CGI-55 wild-type, or their non-SUMOylated triple mutants, the number of PML-nuclear bodies (PML-NBs) is reduced compared with the control cells not expressing the constructs. More interestingly, after treating cells with arsenic trioxide (As2O3), the number of PML-NBs is no longer reduced when the non-SUMOylated triple mutant Ki-1/57 is expressed, suggesting that the SUMOylation of Ki-1/57 has a role in the control of As2O3-induced PML-NB formation. A proteome-wide analysis of Ki-1/57 partners in the presence of either SUMO-1 or SUMO-2 suggests that the involvement of Ki-1/57 with the regulation of gene expression is independent of the presence of either SUMO-1 or SUMO-2; however, the presence of SUMO-1 strongly influences the interaction of Ki-1/57 with proteins associated with cellular metabolism, maintenance, and cell cycle.


Assuntos
Fatores de Regulação Miogênica/metabolismo , Mapeamento de Interação de Proteínas , Processamento de Proteína Pós-Traducional , Proteínas de Ligação a RNA/metabolismo , Proteína SUMO-1/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Trióxido de Arsênio , Arsenicais/farmacologia , Ciclo Celular/genética , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/genética , Núcleo Celular/metabolismo , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Células HEK293 , Células HeLa , Humanos , Lisina , Fatores de Regulação Miogênica/genética , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Óxidos/farmacologia , Plasmídeos/química , Plasmídeos/metabolismo , Ligação Proteica , Biossíntese de Proteínas , Proteínas de Ligação a RNA/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteína SUMO-1/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Sumoilação , Transcrição Gênica
19.
Anal Chem ; 89(8): 4452-4460, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28323417

RESUMO

An ion mobility quadrupole time-of-flight mass spectrometer was used to examine the gas-phase structures of a set of glycopeptides resulting from proteolytic digestion of the well-characterized glycoproteins bovine ribonuclease B, human transferrin, bovine fetuin and human α1-acid glycoprotein, the corresponding deglycosylated peptides, and the glycans released by the endoglycosidase PNGase F. When closely related glycoforms did not occur naturally, exoglycosidases were used to achieve stepwise removal of individual saccharide units from the nonreducing termini of the multiantennary structures. Collision cross sections (CCS) were calculated and plotted as a function of mass-to-charge ratio. Linear trendlines were observed for the glycoforms of individual N-linked glycopeptides, the deglycosylated peptides, and the released, deutero-reduced permethylated glycans. For the glycoforms of a given glycopeptide or set of derivatized glycans, the slope of the line connecting CCS values remained similar for the [M+3H]3+ ions observed as the glycan antennae were shortened by stepwise exoglycosidase treatments; this trend was consistent regardless of the peptide length or the saccharide removed. The results form the basis for a database of CCS values and the CCS increments that correspond to changes in glycoform compositions.


Assuntos
Glicopeptídeos/análise , Glicoproteínas/metabolismo , Espectrometria de Massas , Peptídeos/análise , Polissacarídeos/análise , Animais , Bovinos , Cromatografia Líquida de Alta Pressão , Glicoproteínas/química , Humanos , Espectrometria de Mobilidade Iônica , Peptídeo Hidrolases/metabolismo , Ribonucleases/química , Ribonucleases/metabolismo , Transferrina/química , Transferrina/metabolismo
20.
Int J Mass Spectrom ; 416: 71-79, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-29358899

RESUMO

Immunoglobulin light chain amyloidosis (AL) is a plasma cell disorder characterized by overproduction and deposition of monoclonal immunoglobulin (Ig) light chains (LC) or variable region fragments as amyloid fibrils in various organs and tissues. Much clinical evidence indicates that patients with AL amyloidosis sustain cardiomyocyte impairment and suffer from oxidative stress. We seek to understand the underlying biochemical pathways whose disruption or amplification during sporadic or sustained disease states leads to harmful physiological consequences and to determine the detailed structures of intermediates and products that serve as signposts for the biochemical changes and represent potential biomarkers. In this study, matrix-assisted laser desorption/ionization mass spectrometry provided extensive evidence for oxidative post-translational modifications (PTMs) of an amyloidogenic Ig LC protein from a patient with AL amyloidosis. Some of the tyrosine residues were heavily mono- or di-chlorinated. In addition, a novel oxidative conversion to a nitrile moiety was observed for many of the terminal aminomethyl groups on lysine side chains. In vitro experiments using model peptides, in-solution oxidation, and click chemistry demonstrated that hypochlorous acid produced by the myeloperoxidase - hydrogen peroxide - chloride system could be responsible for these and other, more commonly observed modifications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA