Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Hum Reprod ; 33(6): 1023-1033, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29697805

RESUMO

STUDY QUESTION: What are the characteristics of progesterone-induced (CatSper-mediated) single cell [Ca2+]i signals in spermatozoa from sub-fertile men and how do they relate to fertilizing ability? SUMMARY ANSWER: Single cell analysis of progesterone-induced (CatSper-mediated) [Ca2+]i showed that reduced progesterone-sensitivity is a common feature of sperm from sub-fertile patients and is correlated with fertilization rate. WHAT IS KNOWN ALREADY: Stimulation with progesterone is a widely used method for assessing [Ca2+]i mobilization by activation of CatSper in human spermatozoa. Although data are limited, sperm population studies have indicated an association of poor [Ca2+]i response to progesterone with reduced fertilization ability. STUDY DESIGN, SIZE, DURATION: This was a cohort study using semen samples from 21 donors and 101 patients attending the assisted conception unit at Ninewells Hospital Dundee who were undergoing ART treatment. Patients were recruited from January 2016 to June 2017. PARTICIPANTS/MATERIALS, SETTING, METHODS: Semen donors and patients were recruited in accordance with local ethics approval (13/ES/0091) from the East of Scotland Research Ethics Service (EoSRES) REC1. [Ca2+]i responses were examined by single cell imaging and motility parameters assessed by computer-assisted sperm analysis (CASA). MAIN RESULTS AND THE ROLE OF CHANCE: For analysis, patient samples were divided into three groups IVF(+ve) (successful fertilization; 62 samples), IVF-FF (failed fertilization; eight samples) and ICSI (21 samples). A further 10 IVF samples showed large, spontaneous [Ca2+]i oscillations and responses to progesterone could not be analysed. All patient samples loaded with the [Ca2+]i-indicator fluo4 responded to progesterone stimulation with a biphasic increase in fluorescence (transient followed by plateau) which resembled that seen in progesterone-stimulated donor samples. The mean normalized response (progesterone-induced increase in fluorescence normalized to resting level) was significantly smaller in IVF-FF and ICSI patient groups than in donors. All samples were further analysed by plotting, for each cell, the relationship between resting fluorescence intensity and the progesterone-induced fluorescence increment. In donor samples these plots overlaid closely and had a gradient of ≈ 2 and plots for most IVF(+ve) samples closely resembled the donor distribution. However, in a subset (≈ 10%) of IVF(+ve) samples, 3/8 IVF-FF samples and one-third of ICSI samples the gradient of the plot was significantly lower, indicating that the response to progesterone of the cells in these samples was abnormally small. Examination of the relationship between gradient (regression coefficient of the plot) in IVF samples and fertilization rate showed a positive correlation. In IVF-FF and ICSI groups, the proportion of cells in which a response to progesterone could be detected was significantly lower than in donors and IVF (+ve) patients. Approximately 20% of cells in donor, IVF(+ve) and ICSI samples generated [Ca2+]i oscillations when challenged with progesterone but in IVF-FF samples only ≈ 10% of cells generated oscillations and there was a significantly greater proportion of samples where no oscillations were observed. Levels of hyperactivated motility were lower in IVF(+ve) and IVF-FF groups compared to controls, IVF-FF also having lower levels than IVF(+ve). LIMITATIONS, REASONS FOR CAUTION: This is an in vitro study and caution must be taken when extrapolating these results in vivo. WIDER IMPLICATIONS OF THE FINDINGS: This study reveals important details of impaired [Ca2+]i signalling in sperm from sub-fertile men that cannot be detected in population studies. STUDY FUNDING/COMPETING INTEREST(S): This study was funded by a MRC project grant (MR/M012492/1; MR/K013343/1). Additional funding was provided by Chief Scientist Office/NHS research Scotland.


Assuntos
Canais de Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Infertilidade Masculina/metabolismo , Espermatozoides/efeitos dos fármacos , Espermatozoides/metabolismo , Estudos de Casos e Controles , Estudos de Coortes , Feminino , Fertilização in vitro/efeitos dos fármacos , Humanos , Masculino , Gravidez , Progesterona/farmacologia , Análise do Sêmen , Análise de Célula Única/métodos , Motilidade dos Espermatozoides/efeitos dos fármacos , Espermatozoides/citologia
2.
Hum Reprod ; 32(10): 1995-2006, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28938737

RESUMO

STUDY QUESTION: Does progesterone in human follicular fluid (hFF) activate CatSper and do other components of hFF modulate this effect and/or contribute separately to hFF-induced Ca2+ signaling? SUMMARY ANSWER: hFF potently stimulates CatSper and increases [Ca2+]i, primarily due to high concentrations of progesterone, however, other components of hFF also contribute to [Ca2+]i signaling, including modulation of CatSper channel activity and inhibition of [Ca2+]i oscillations. WHAT IS KNOWN ALREADY: CatSper, the principal Ca2+ channel in spermatozoa, is progesterone-sensitive and essential for fertility. Both hFF and progesterone, which is present in hFF, influence sperm function and increase their [Ca2+]i. STUDY DESIGN, SIZE, DURATION: This basic medical research study used semen samples from >40 donors and hFF from >50 patients who were undergoing surgical oocyte retrieval for IVF/ICSI. PARTICIPANTS/MATERIALS, SETTING, METHODS: Semen donors and patients were recruited in accordance with local ethics approval (13/ES/0091) from the East of Scotland Research Ethics Service REC1. Activities of CatSper and KSper were assessed by patch clamp electrophysiology. Sperm [Ca2+]i responses were examined in sperm populations and single cells. Computer-assisted sperm analysis (CASA) parameters and penetration into viscous media were used to assess functional effects. MAIN RESULTS AND THE ROLE OF CHANCE: hFF and progesterone significantly potentiated CatSper currents. Under quasi-physiological conditions, hFF (up to 50%) failed to alter membrane K+ conductance or current reversal potential. hFF and progesterone (at an equivalent concentration) stimulated similar biphasic [Ca2+]i signals both in sperm populations and single cells. At a high hFF concentration (10%), the sustained (plateau) component of the [Ca2+]i signal was consistently greater than that induced by progesterone alone. In single cell recordings, 1% hFF-induced [Ca2+]i oscillations similarly to progesterone but with 10% hFF generation of [Ca2+]i oscillations was suppressed. After treatment to 'strip' lipid-derived mediators, hFF failed to significantly stimulate CatSper currents but induced small [Ca2+]i responses that were greater than those induced by the equivalent concentration of progesterone after stripping. Similar [Ca2+]i responses were observed when sperm pretreated with 3 µM progesterone (to desensitize progesterone responses) were stimulated with hFF or stripped hFF. hFF stimulated viscous media penetration and was more effective than the equivalent does of progesterone. LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: This was an in vitro study. Caution must be taken when extrapolating these results in vivo. WIDER IMPLICATIONS OF THE FINDINGS: This study directly demonstrates that hFF activates CatSper and establishes that the biologically important effects of hFF reflect, at least in part, action on this channel, primarily via progesterone. However, these experiments also demonstrate that other components of hFF both contribute to the [Ca2+]i signal and modulate the activation of CatSper. Simple in vitro experiments performed out of the context of the complex in vivo environment need to be interpreted with caution. STUDY FUNDING/COMPETING INTEREST(S): Funding was provided by MRC (MR/K013343/1, MR/012492/1) (S.G.B., S.J.P., C.L.R.B.) and University of Abertay (sabbatical for S.G.B.). Additional funding was provided by TENOVUS SCOTLAND (S.M.D.S.), Chief Scientist Office/NHS Research Scotland (S.M.D.S). C.L.R.B. is EIC of MHR and Chair of the WHO ESG on Diagnosis of Male infertility. The remaining authors have no conlicts of interest.


Assuntos
Canais de Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Líquido Folicular/metabolismo , Espermatozoides/efeitos dos fármacos , Espermatozoides/metabolismo , Estudos de Casos e Controles , Feminino , Humanos , Infertilidade Masculina/metabolismo , Masculino , Progesterona/farmacologia , Análise do Sêmen/métodos , Motilidade dos Espermatozoides/efeitos dos fármacos
3.
Biochem J ; 448(2): 189-200, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22943284

RESUMO

Ca2+i signalling is pivotal to sperm function. Progesterone, the best-characterized agonist of human sperm Ca2+i signalling, stimulates a biphasic [Ca2+]i rise, comprising a transient and subsequent sustained phase. In accordance with recent reports that progesterone directly activates CatSper, the [Ca2+]i transient was detectable in the anterior flagellum (where CatSper is expressed) 1-2 s before responses in the head and neck. Pre-treatment with 5 µM 2-APB (2-aminoethoxydiphenyl borate), which enhances activity of store-operated channel proteins (Orai) by facilitating interaction with their activator [STIM (stromal interaction molecule)] 'amplified' progesterone-induced [Ca2+]i transients at the sperm neck/midpiece without modifying kinetics. The flagellar [Ca2+]i response was unchanged. 2-APB (5 µM) also enhanced the sustained response in the midpiece, possibly reflecting mitochondrial Ca2+ accumulation downstream of the potentiated [Ca2+]i transient. Pre-treatment with 50-100 µM 2-APB failed to potentiate the transient and suppressed sustained [Ca2+]i elevation. When applied during the [Ca2+]i plateau, 50-100 µM 2-APB caused a transient fall in [Ca2+]i, which then recovered despite the continued presence of 2-APB. Loperamide (a chemically different store-operated channel agonist) enhanced the progesterone-induced [Ca2+]i signal and potentiated progesterone-induced hyperactivated motility. Neither 2-APB nor loperamide raised pHi (which would activate CatSper) and both compounds inhibited CatSper currents. STIM and Orai were detected and localized primarily to the neck/midpiece and acrosome where Ca2+ stores are present and the effects of 2-APB are focussed, but store-operated currents could not be detected in human sperm. We propose that 2-APB-sensitive channels amplify [Ca2+]i elevation induced by progesterone (and other CatSper agonists), amplifying, propagating and providing spatio-temporal complexity in [Ca2+]i signals of human sperm.


Assuntos
Compostos de Boro/farmacologia , Canais de Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Espermatozoides/metabolismo , Agonistas dos Canais de Cálcio/farmacologia , Moléculas de Adesão Celular/metabolismo , Humanos , Técnicas In Vitro , Loperamida/farmacologia , Masculino , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Proteína ORAI1 , Proteína ORAI2 , Progesterona/farmacologia , Peça Intermédia do Espermatozoide/efeitos dos fármacos , Peça Intermédia do Espermatozoide/metabolismo , Motilidade dos Espermatozoides/efeitos dos fármacos , Molécula 1 de Interação Estromal , Molécula 2 de Interação Estromal
4.
Int J Dev Biol ; 52(5-6): 615-26, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18649275

RESUMO

Calcium signalling plays a pivotal role in sperm physiology, being intimately involved in the regulation of acrosome reaction, chemotaxis and hyperactivation. Here we describe briefly the mechanisms of calcium regulation in somatic cells and the ways in which these mechanisms have been adapted to function in mature spermatozoa. We then consider recent data from this and other laboratories on the responses of sperm to three compounds: progesterone and nitric oxide (both products of the cumulus oophorus) and 4-aminopyridine. All of these compounds induce calcium signals in the posterior sperm head and neck region and, when applied at appropriate concentrations, modify flagellar activity, causing asymmetric bending of the proximal flagellum. We argue that these effects reflect a common mode of action, mobilisation of calcium stored in the sperm neck region. Finally we consider the nature of calcium signalling pathways in sperm. We suggest that this highly specialised and extremely polarised cell, though working with the same calcium signalling 'tools' as those of somatic cells, employs them to generate unusually 'hard-wired' calcium signals that do not act to integrate stimuli. 'Leakage' between these calcium signalling pathways will generate inappropriate responses, compromising functioning of the cell.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Cauda do Espermatozoide/metabolismo , Espermatozoides/fisiologia , 4-Aminopiridina/química , 4-Aminopiridina/metabolismo , Humanos , Masculino , Modelos Biológicos , Óxido Nítrico/metabolismo , Progesterona/metabolismo , Transdução de Sinais , Motilidade dos Espermatozoides , Espermatozoides/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA