Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
mBio ; 12(2)2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33879587

RESUMO

Since nontuberculous mycobacteria (NTM) are pervasive in the environment and NTM infections are relatively uncommon, underlying hereditary or acquired host susceptibility factors should be sought for in most NTM-infected patients. To facilitate identification of underlying risk factors, it is useful to classify NTM disease into skin-soft tissue infections, isolated NTM lung disease, and extrapulmonary visceral/disseminated disease because the latter two categories have unique sets of underlying host risk factors. Nakajima and coworkers (M. Nakajima, M. Matsuyama, M. Kawaguchi, T. Kiwamoto, et al., mBio 12:e01947-20, 2021, https://doi.org/10.1128/mBio.01947-20) in a recent issue of mBio found that Nrf2 (nuclear factor erythroid 2-related factor 2), a transcription factor that is induced by oxidative stress but induces antioxidant molecules, provides protection against an NTM infection in a murine model. While they showed that Nrf2 induction of Nramp-1 enhanced phagosome-lysosome fusion, we discuss other potential mechanisms by which oxidative stress predisposes to and Nrf2 protects against NTM infections.


Assuntos
Ativação de Macrófagos , Infecções por Mycobacterium não Tuberculosas , Animais , Granuloma , Humanos , Camundongos , Mycobacterium avium , Fator 2 Relacionado a NF-E2 , Micobactérias não Tuberculosas
2.
Free Radic Biol Med ; 141: 244-252, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31238128

RESUMO

Chronic HIV infection in the era of anti-retroviral therapy is associated with dramatically increased risk of developing severe cardio pulmonary disease. Common to these diseases is increased oxidative burden and chronic inflammation despite low viremia and restoration of CD4+ T-cell levels. Soluble viral factors are heavily implicated in these disease processes, including the HIV Transactivator of Transcription (Tat). Tat is produced in high levels during infection and secreted from infected cells into circulation where it is internalized by bystander cells and is known to regulate inflammatory pathways and elicit a pro-oxidant environment. We have examined the effects of Tat on the anti-oxidant regulatory network driven by the transcription factor Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) in primary human pulmonary arterial endothelial cells, which are heavily involved in pathogenesis of HIV associated lung diseases including pulmonary arterial hypertension and COPD. Co-expression of Tat and a luciferase reporter construct driven by the Nrf2 activated anti-oxidant response element (ARE) demonstrated markedly reduced Nrf2/ARE activity, even when stimulated by the potent Nrf2 activating compound PB125. Additionally, Heme-oxygenase-1 (HO-1) transcription was potently repressed by Tat in a cell line as well as primary endothelial cells, and treatment with PB125 failed to restore transcriptional activity. Other anti-oxidant Nrf2 genes examined included NADPH Dehydrogenase Quinone 1 (NQO1) and Sulfiredoxin-1 (SRXN1). NQO1 was repressed basally by Tat, while SRXN1 transcription was refractory to activation by PB125 in the presence of Tat. Lastly, we demonstrated that Tat expressing cells have increased indicators of oxidative stress including elevated production of reactive oxygen species, measured by electron paramagnetic resonance spectroscopy, and increased levels of nitrotyrosine content. These observations suggest a novel mechanism by which HIV Tat increases oxidative burden by dysregulation of the Nrf2/ARE pathway.


Assuntos
Antioxidantes/metabolismo , Infecções por HIV/genética , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Elementos de Resposta Antioxidante/genética , Linhagem Celular , Células Endoteliais/virologia , HIV/genética , HIV/patogenicidade , Infecções por HIV/metabolismo , Infecções por HIV/virologia , Heme Oxigenase-1/genética , Humanos , NAD(P)H Desidrogenase (Quinona)/genética , Oxirredução , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , RNA Interferente Pequeno/genética , Espécies Reativas de Oxigênio/metabolismo
3.
Nature ; 505(7483): 412-6, 2014 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-24317696

RESUMO

Respiratory surfaces are exposed to billions of particulates and pathogens daily. A protective mucus barrier traps and eliminates them through mucociliary clearance (MCC). However, excessive mucus contributes to transient respiratory infections and to the pathogenesis of numerous respiratory diseases. MUC5AC and MUC5B are evolutionarily conserved genes that encode structurally related mucin glycoproteins, the principal macromolecules in airway mucus. Genetic variants are linked to diverse lung diseases, but specific roles for MUC5AC and MUC5B in MCC, and the lasting effects of their inhibition, are unknown. Here we show that mouse Muc5b (but not Muc5ac) is required for MCC, for controlling infections in the airways and middle ear, and for maintaining immune homeostasis in mouse lungs, whereas Muc5ac is dispensable. Muc5b deficiency caused materials to accumulate in upper and lower airways. This defect led to chronic infection by multiple bacterial species, including Staphylococcus aureus, and to inflammation that failed to resolve normally. Apoptotic macrophages accumulated, phagocytosis was impaired, and interleukin-23 (IL-23) production was reduced in Muc5b(-/-) mice. By contrast, in mice that transgenically overexpress Muc5b, macrophage functions improved. Existing dogma defines mucous phenotypes in asthma and chronic obstructive pulmonary disease (COPD) as driven by increased MUC5AC, with MUC5B levels either unaffected or increased in expectorated sputum. However, in many patients, MUC5B production at airway surfaces decreases by as much as 90%. By distinguishing a specific role for Muc5b in MCC, and by determining its impact on bacterial infections and inflammation in mice, our results provide a refined framework for designing targeted therapies to control mucin secretion and restore MCC.


Assuntos
Pulmão/imunologia , Mucina-5B/metabolismo , Mucosa Respiratória/imunologia , Mucosa Respiratória/metabolismo , Animais , Asma/imunologia , Asma/metabolismo , Infecções Bacterianas/imunologia , Infecções Bacterianas/microbiologia , Cílios/fisiologia , Orelha Média/imunologia , Orelha Média/microbiologia , Feminino , Inflamação/patologia , Pulmão/metabolismo , Pulmão/microbiologia , Macrófagos/imunologia , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Biológicos , Mucina-5AC/deficiência , Mucina-5AC/metabolismo , Mucina-5B/deficiência , Mucina-5B/genética , Fagocitose , Doença Pulmonar Obstrutiva Crônica/imunologia , Doença Pulmonar Obstrutiva Crônica/microbiologia , Staphylococcus aureus/imunologia , Análise de Sobrevida
4.
Am J Respir Crit Care Med ; 174(4): 437-45, 2006 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-16728715

RESUMO

RATIONALE: HIV-infected patients with pulmonary arterial hypertension have histologic manifestations that are indistinguishable from those found in patients with idiopathic pulmonary arterial hypertension. In addition, the role of pleiotropic viral proteins in the development of plexiform lesions in HIV-related pulmonary hypertension (HRPH) has not been explored. Simian immunodeficiency virus (SIV) infection of macaques has been found to closely recapitulate many of the characteristic features of HIV infection, and thus hallmarks of pulmonary arterial hypertension should also be found in this nonhuman primate model of HIV. OBJECTIVES: To determine whether pulmonary arterial lesions were present in archived SIV-infected macaque lung tissues from Johns Hopkins University and two National Primate Research Centers. METHODS: Archived macaque and human lung sections were examined via immunohistochemistry for evidence of complex vascular lesions. RESULTS: Complex plexiform-like lesions characterized by lumenal obliteration, intimal disruption, medial hypertrophy, thrombosis, and recanalized lumena were found exclusively in animals infected with SHIV-nef (a chimeric viral construct containing the HIV nef gene in an SIV backbone), but not in animals infected with SIV. The mass of cells in the lesions were factor VIII positive, and contained cells positive for muscle-specific and smooth muscle actins. Lung mononuclear cells were positive for HIV Nef, suggesting viral replication. Endothelial cells in both the SHIV-nef macaques and patients with HRPH, but not in patients with idiopathic pulmonary arterial hypertension, were also Nef positive. CONCLUSIONS: The discovery of complex vascular lesions in SHIV-nef- but not SIV-infected animals, and the presence of Nef in the vascular cells of patients with HRPH, suggest that Nef plays a key role in the development of severe pulmonary arterial disease.


Assuntos
Produtos do Gene nef/fisiologia , HIV-1/genética , Hipertensão Pulmonar/genética , Síndrome de Imunodeficiência Adquirida dos Símios/genética , Proteínas Virais Reguladoras e Acessórias/genética , Animais , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Imunofluorescência , HIV-1/fisiologia , Humanos , Imuno-Histoquímica , Macaca , Vírus da Imunodeficiência Símia/genética , Vírus da Imunodeficiência Símia/patogenicidade , Replicação Viral , Produtos do Gene nef do Vírus da Imunodeficiência Humana
5.
DNA Cell Biol ; 24(5): 299-310, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15869407

RESUMO

The expression of manganese superoxide dismutase (MnSOD) is regulated by agents associated with cancer development. It has been shown that infection with the human immunodeficiency virus type 1 (HIV-1) is associated with the development of liver cancer and that the transactivating transcriptional factor (Tat) of human HIV-1 reduces the expression of MnSOD in several cell types. However, the role of Tat in the expression of MnSOD in hepatocellular carcinoma is unknown. Furthermore, the precise mechanisms whereby Tat suppresses MnSOD expression in hepatocellular carcinoma cells remain unclear. In this report, we build on our original observations that Tat changes the distribution of Sp family members on the MnSOD promoter, which accounts for Tat-dependent changes in basal expression. In hepatic cells, Tat expression upregulates Sp1/Sp3, which play different roles in regulating MnSOD transcription. While overexpression of Sp1 stimulates, overexpression of Sp3 represses transcriptional activity. The transcription repression effect of Sp3 is not due to Sp3 competing for the binding site with Sp1 because only the full-length Sp3 but not the truncated Sp3 suppresses MnSOD promoter activity. These findings suggest a novel mechanism by which Tat modulates the repression of the MnSOD gene and establish a link between HIV infection and liver cancer.


Assuntos
Regulação Enzimológica da Expressão Gênica , Produtos do Gene tat/genética , HIV-1/genética , Fator de Transcrição Sp1/metabolismo , Superóxido Dismutase/metabolismo , Western Blotting , Carcinoma Hepatocelular , Linhagem Celular Transformada , Linhagem Celular Tumoral , Genes Reporter , Humanos , Neoplasias Hepáticas , Luciferases/análise , Luciferases/metabolismo , Plasmídeos , Regiões Promotoras Genéticas , RNA Mensageiro/metabolismo , Fator de Transcrição Sp1/genética , Superóxido Dismutase/genética , Transcrição Gênica , Transfecção , beta-Galactosidase/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana
6.
Free Radic Biol Med ; 37(6): 869-80, 2004 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-15706661

RESUMO

Regulation of the basal manganese superoxide dismutase (SOD2) promoter depends on the transcriptional activity of the Sp family of transcription factors. Here we report that reduced expression in the presence of Tat is independent of induction with Tumor necrosis factor alpha and that Tat affects the interaction of Sp1 and Sp3 with the basal promoter. Footprinting and electrophoretic mobility shift assay (EMSA) analyses with extracts from HeLa cells showed that Sp1/Sp3 complexes populate the proximal SOD2 promoter, and that Tat leads to an increase in the binding activity of Sp3. In Drosophila S2 cells, both Sp1 and Sp3 activated the basal SOD2 promoter (88.1 +/- 39.4 fold vs. 10.3 +/- 3.5 fold, respectively), demonstrating a positive, yet lower transcriptional regulatory function for Sp3. Additionally, the inability of Sp3 to synergistically affect promoter activity indicates an efficient competition of Sp3 with Sp1 for the multiple Sp binding sites in the SOD2 basal promoter. Tat potentiated both Sp1 and Sp3 activation of the promoter in S2 cells, though the activity of Sp3 was still lower than that of Sp1. Thus, the consequence of a shift by Tat to increased Sp3-containing complexes on the basal SOD2 promoter is decreased SOD2 expression. Together, our studies demonstrate the functional importance of the interaction of Sp1, Sp3, and Tat, revealing a possible mechanism for the attenuation of basal manganese superoxide dismutase expression.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Regulação Viral da Expressão Gênica , Produtos do Gene tat/genética , Produtos do Gene tat/fisiologia , HIV-1/genética , Fator de Transcrição Sp1/metabolismo , Superóxido Dismutase/biossíntese , Fatores de Transcrição/metabolismo , Acetilcisteína/química , Animais , Sítios de Ligação , Northern Blotting , Western Blotting , Diferenciação Celular , Linhagem Celular , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , DNA/metabolismo , Proteínas de Ligação a DNA/genética , Drosophila , Radicais Livres , Células HeLa , Humanos , Luciferases/metabolismo , Modelos Químicos , Estresse Oxidativo , Plasmídeos/metabolismo , Ligação Proteica , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp3 , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Fatores de Transcrição/genética , Transfecção , Produtos do Gene tat do Vírus da Imunodeficiência Humana
7.
J Biol Chem ; 277(17): 14390-9, 2002 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-11827962

RESUMO

Human immunodeficiency virus infection is associated with inflammation and endothelial cell activation that cannot be ascribed to direct infection by the virus or to the presence of opportunistic infections. Factors related to the virus itself, to the host and/or to environmental exposures probably account for these observations. The HIV protein Tat, a viral regulator required for efficient transcription of the viral genome in host cells is secreted from infected cells and taken up by uninfected by-stander cells. Tat can also act as a general transcriptional activator of key inflammatory molecules. We have examined whether Tat contributes to this endothelial cell activation by activating NF-kappaB. Human endothelial cells exposed to Tat in the culture medium activated E-selectin expression with delayed kinetics compared with tumor necrosis factor (TNF). Tat-mediated E-selectin up-regulation required the basic domain of Tat and was inhibited by a Tat antibody. Transfection of human E-selectin promoter-luciferase reporter constructs into Tat-bearing cells or into endothelial cells co-transfected with a Tat expression vector resulted in induction of luciferase expression. Either Tat or TNF activated p65 translocation and binding to an oligonucleotide containing the E-selectin kappaB site 3 sequence. Tat-mediated p65 translocation was also delayed compared with TNF. Neither agent induced new synthesis of p65. A super-repressor adenovirus (AdIkappaBalphaSR) that constitutively sequesters IkappaB in the cytoplasm as well as cycloheximide or actinomycin D inhibited Tat- or TNF-mediated kappaB translocation and E-selectin up-regulation.


Assuntos
Selectina E/metabolismo , Endotélio Vascular/metabolismo , Produtos do Gene tat/fisiologia , HIV-1/fisiologia , NF-kappa B/metabolismo , Células Cultivadas , Selectina E/biossíntese , Selectina E/genética , Ensaio de Desvio de Mobilidade Eletroforética , Células HeLa , Humanos , Regiões Promotoras Genéticas , Proteínas Recombinantes/metabolismo , Regulação para Cima/fisiologia , Produtos do Gene tat do Vírus da Imunodeficiência Humana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA