Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 3(19)2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30282822

RESUMO

BACKGROUND: Crohn's disease (CD) is highly heterogeneous, due in large part to variability in cellular processes that underlie the natural history of CD, thereby confounding effective therapy. There is a critical need to advance understanding of the cellular mechanisms that drive CD heterogeneity. METHODS: We performed small RNA sequencing of adult colon tissue from CD and NIBD controls. Colonic epithelial cells and immune cells were isolated from colonic tissues, and microRNA-31 (miR-31) expression was measured. miR-31 expression was measured in colonoid cultures generated from controls and patients with CD. We performed small RNA-sequencing of formalin-fixed paraffin-embedded colon and ileum biopsies from treatment-naive pediatric patients with CD and controls and collected data on disease features and outcomes. RESULTS: Small RNA-sequencing and microRNA profiling in the colon revealed 2 distinct molecular subtypes, each with different clinical associations. Notably, we found that miR-31 expression was a driver of these 2 subtypes and, further, that miR-31 expression was particularly pronounced in epithelial cells. Colonoids revealed that miR-31 expression differences are preserved in this ex vivo system. In adult patients, low colonic miR-31 expression levels at the time of surgery were associated with worse disease outcome as measured by need for an end ileostomy and recurrence of disease in the neoterminal ileum. In pediatric patients, lower miR-31 expression at the time of diagnosis was associated with future development of fibrostenotic ileal CD requiring surgeryCONCLUSIONS. These findings represent an important step forward in designing more effective clinical trials and developing personalized CD therapies. FUNDING: This work was supported by CCF Career Development Award (SZS), R01-ES024983 from NIEHS (SZS and TSF), 1R01DK104828-01A1 from NIDDK (SZS and TSF), P01-DK094779-01A1 from NIDDK (SZS), P30-DK034987 from NIDDK (SZS), 1-16-ACE-47 ADA Pathway Award (PS), UNC Nutrition Obesity Research Center Pilot & Feasibility Grant P30DK056350 (PS), CCF PRO-KIIDS NETWORK (SZS and PS), UNC CGIBD T32 Training Grant from NIDDK (JBB), T32 Training Grant (5T32GM007092-42) from NIGMS (MH), and SHARE from the Helmsley Trust (SZS). The UNC Translational Pathology Laboratory is supported, in part, by grants from the National Cancer Institute (3P30CA016086) and the UNC University Cancer Research Fund (UCRF) (PS).


Assuntos
Doença de Crohn/genética , MicroRNAs/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/metabolismo , Biópsia , Criança , Pré-Escolar , Estudos de Coortes , Colectomia , Colo/metabolismo , Colo/patologia , Colo/cirurgia , Doença de Crohn/patologia , Doença de Crohn/cirurgia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Perfilação da Expressão Gênica , Humanos , Ileostomia , Íleo/metabolismo , Íleo/patologia , Íleo/cirurgia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Masculino , Pessoa de Meia-Idade , Prognóstico , Recidiva , Reoperação/estatística & dados numéricos , Análise de Sequência de RNA , Resultado do Tratamento , Regulação para Cima , Adulto Jovem
2.
Mamm Genome ; 29(1-2): 153-167, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29429127

RESUMO

Epigenetic effects of environmental chemicals are under intense investigation to fill existing knowledge gaps between environmental/occupational exposures and adverse health outcomes. Chromatin accessibility is one prominent mechanism of epigenetic control of transcription, and understanding of the chemical effects on both could inform the causal role of epigenetic alterations in disease mechanisms. In this study, we hypothesized that baseline variability in chromatin organization and transcription profiles among various tissues and mouse strains influence the outcome of exposure to the DNA damaging chemical 1,3-butadiene. To test this hypothesis, we evaluated DNA damage along with comprehensive quantification of RNA transcripts (RNA-seq), identification of accessible chromatin (ATAC-seq), and characterization of regions with histone modifications associated with active transcription (ChIP-seq for acetylation at histone 3 lysine 27, H3K27ac). We collected these data in the lung, liver, and kidney of mice from two genetically divergent strains, C57BL/6J and CAST/EiJ, that were exposed to clean air or to 1,3-butadiene (~600 ppm) for 2 weeks. We found that tissue effects dominate differences in both gene expression and chromatin states, followed by strain effects. At baseline, xenobiotic metabolism was consistently more active in CAST/EiJ, while immune system pathways were more active in C57BL/6J across tissues. Surprisingly, even though all three tissues in both strains harbored butadiene-induced DNA damage, little transcriptional effect of butadiene was observed in liver and kidney. Toxicologically relevant effects of butadiene in the lung were on the pathways of xenobiotic metabolism and inflammation. We also found that variability in chromatin accessibility across individuals (i.e., strains) only partially explains the variability in transcription. This study showed that variation in the basal states of epigenome and transcriptome may be useful indicators for individuals or tissues susceptible to genotoxic environmental chemicals.


Assuntos
Dano ao DNA/efeitos dos fármacos , Epigênese Genética , Transcrição Gênica/genética , Transcriptoma/genética , Animais , Butadienos/toxicidade , Carcinógenos/toxicidade , Cromatina/efeitos dos fármacos , Histonas/genética , Fígado/efeitos dos fármacos , Fígado/patologia , Pulmão/efeitos dos fármacos , Pulmão/patologia , Camundongos , Testes de Mutagenicidade , Especificidade de Órgãos/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA