Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Plant J ; 111(5): 1425-1438, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35815412

RESUMO

Stomata and leaf veins play an essential role in transpiration and the movement of water throughout leaves. These traits are thus thought to play a key role in the adaptation of plants to drought and a better understanding of the genetic basis of their variation and coordination could inform efforts to improve drought tolerance. Here, we explore patterns of variation and covariation in leaf anatomical traits and analyze their genetic architecture via genome-wide association (GWA) analyses in cultivated sunflower (Helianthus annuus L.). Traits related to stomatal density and morphology as well as lower-order veins were manually measured from digital images while the density of minor veins was estimated using a novel deep learning approach. Leaf, stomatal, and vein traits exhibited numerous significant correlations that generally followed expectations based on functional relationships. Correlated suites of traits could further be separated along three major principal component (PC) axes that were heavily influenced by variation in traits related to gas exchange, leaf hydraulics, and leaf construction. While there was limited evidence of colocalization when individual traits were subjected to GWA analyses, major multivariate PC axes that were most strongly influenced by several traits related to gas exchange or leaf construction did exhibit significant genomic associations. These results provide insight into the genetic basis of leaf trait covariation and showcase potential targets for future efforts aimed at modifying leaf anatomical traits in sunflower.


Assuntos
Helianthus , Estudo de Associação Genômica Ampla , Genômica , Helianthus/genética , Fenótipo , Folhas de Planta/anatomia & histologia , Folhas de Planta/genética , Água
2.
Proc Natl Acad Sci U S A ; 114(23): E4592-E4601, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28533367

RESUMO

Collective cell movement is critical to the emergent properties of many multicellular systems, including microbial self-organization in biofilms, embryogenesis, wound healing, and cancer metastasis. However, even the best-studied systems lack a complete picture of how diverse physical and chemical cues act upon individual cells to ensure coordinated multicellular behavior. Known for its social developmental cycle, the bacterium Myxococcus xanthus uses coordinated movement to generate three-dimensional aggregates called fruiting bodies. Despite extensive progress in identifying genes controlling fruiting body development, cell behaviors and cell-cell communication mechanisms that mediate aggregation are largely unknown. We developed an approach to examine emergent behaviors that couples fluorescent cell tracking with data-driven models. A unique feature of this approach is the ability to identify cell behaviors affecting the observed aggregation dynamics without full knowledge of the underlying biological mechanisms. The fluorescent cell tracking revealed large deviations in the behavior of individual cells. Our modeling method indicated that decreased cell motility inside the aggregates, a biased walk toward aggregate centroids, and alignment among neighboring cells in a radial direction to the nearest aggregate are behaviors that enhance aggregation dynamics. Our modeling method also revealed that aggregation is generally robust to perturbations in these behaviors and identified possible compensatory mechanisms. The resulting approach of directly combining behavior quantification with data-driven simulations can be applied to more complex systems of collective cell movement without prior knowledge of the cellular machinery and behavioral cues.


Assuntos
Modelos Biológicos , Myxococcus xanthus/crescimento & desenvolvimento , Myxococcus xanthus/fisiologia , Interações Microbianas/fisiologia , Fenômenos Microbiológicos , Movimento/fisiologia , Myxococcus xanthus/citologia
3.
J Gen Virol ; 97(8): 1765-1770, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27153814

RESUMO

Newcastle disease virus (NDV) is being developed as an oncolytic virus for virotherapy. In this study we analysed the regulation of complement-mediated inactivation of a recombinant NDV in different host cells. NDV grown in human cells was less sensitive to complement-mediated virus inactivation than NDV grown in embryonated chicken eggs. Additionally, NDV produced from HeLa-S3 cells is more resistant to complement than NDV from 293F cells, which correlated with higher expression and incorporation of complement regulatory proteins (CD46, CD55 and CD59) into virions from HeLa-S3 cells. Further analysis of the recombinant NDVs individually expressing the three CD molecules showed that CD55 is the most potent in counteracting complement-mediated virus inactivation. The results provide important information on selecting NDV manufacture substrate to mitigate complement-mediated virus inactivation.


Assuntos
Antígenos CD55/metabolismo , Proteínas Inativadoras do Complemento/metabolismo , Proteínas do Sistema Complemento/metabolismo , Interações Hospedeiro-Patógeno , Fatores Imunológicos/metabolismo , Vírus da Doença de Newcastle/imunologia , Vírus da Doença de Newcastle/fisiologia , Animais , Antígenos CD59/metabolismo , Linhagem Celular , Galinhas , Humanos , Proteína Cofatora de Membrana/metabolismo
4.
Vaccine ; 31(48): 5713-21, 2013 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-24099876

RESUMO

Defective viral genomes (DVGs) are generated during virus replication. DVGs bearing complementary ends are strong inducers of dendritic cell (DC) maturation and of the expression of antiviral and pro-inflammatory cytokines by triggering signaling of the RIG-I family of intracellular pattern recognition receptors. Our data show that DCs stimulated with virus containing DVGs have an enhanced ability to activate human T cells and can induce adaptive immunity in mice. In addition, we describe the generation of a short Sendai virus (SeV)-derived DVG RNA (DVG-324) that maintains strong immunostimulatory activity in vitro and in vivo. DVG-324 induced high levels of Ifnb expression when transfected into cells and triggered fast expression of pro-inflammatory cytokines and mobilization of dendritic cells when injected into the footpad of mice. Importantly, DVG-324 enhanced the production of antibodies to a prototypic vaccine after a single intramuscular immunization in mice. Notably, the pro-inflammatory cytokine profile induced by DVG-324 was different from that induced by poly I:C, the only viral RNA analog currently used as an immunostimulant in vivo, suggesting a distinct mechanism of action. SeV-derived oligonucleotides represent novel alternatives to be harnessed as potent adjuvants for vaccination.


Assuntos
Vírus Defeituosos/imunologia , Células Dendríticas/imunologia , RNA Viral/imunologia , Vírus Sendai/imunologia , Linfócitos T/imunologia , Animais , Anticorpos Antivirais/sangue , Citocinas/metabolismo , Vírus Defeituosos/genética , Células Dendríticas/virologia , Injeções Intramusculares , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , RNA Viral/genética , Vírus Sendai/genética , Vacinas Virais/administração & dosagem , Vacinas Virais/imunologia
5.
Int J Radiat Oncol Biol Phys ; 84(5): e663-8, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22975605

RESUMO

PURPOSE: Breath-hold (BH) treatments can be used to reduce cardiac dose for patients with left-sided breast cancer and unfavorable cardiac anatomy. A surface imaging technique was developed for accurate patient setup and reproducible real-time BH positioning. METHODS AND MATERIALS: Three-dimensional surface images were obtained for 20 patients. Surface imaging was used to correct the daily setup for each patient. Initial setup data were recorded for 443 fractions and were analyzed to assess random and systematic errors. Real time monitoring was used to verify surface placement during BH. The radiation beam was not turned on if the BH position difference was greater than 5 mm. Real-time surface data were analyzed for 2398 BHs and 363 treatment fractions. The mean and maximum differences were calculated. The percentage of BHs greater than tolerance was calculated. RESULTS: The mean shifts for initial patient setup were 2.0 mm, 1.2 mm, and 0.3 mm in the vertical, longitudinal, and lateral directions, respectively. The mean 3-dimensional vector shift was 7.8 mm. Random and systematic errors were less than 4 mm. Real-time surface monitoring data indicated that 22% of the BHs were outside the 5-mm tolerance (range, 7%-41%), and there was a correlation with breast volume. The mean difference between the treated and reference BH positions was 2 mm in each direction. For out-of-tolerance BHs, the average difference in the BH position was 6.3 mm, and the average maximum difference was 8.8 mm. CONCLUSIONS: Daily real-time surface imaging ensures accurate and reproducible positioning for BH treatment of left-sided breast cancer patients with unfavorable cardiac anatomy.


Assuntos
Neoplasias da Mama/radioterapia , Suspensão da Respiração , Coração/efeitos da radiação , Órgãos em Risco/efeitos da radiação , Lesões por Radiação/prevenção & controle , Erros de Configuração em Radioterapia/prevenção & controle , Adulto , Idoso , Mama/anatomia & histologia , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Fracionamento da Dose de Radiação , Feminino , Coração/diagnóstico por imagem , Humanos , Imageamento Tridimensional/métodos , Pessoa de Meia-Idade , Tamanho do Órgão , Órgãos em Risco/diagnóstico por imagem , Posicionamento do Paciente/métodos , Radiografia , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Assistida por Computador/métodos , Reprodutibilidade dos Testes , Decúbito Dorsal , Fluxo de Trabalho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA