Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Sci Rep ; 14(1): 12401, 2024 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-38811609

RESUMO

Persistent post-surgical pain (PPSP) is defined as pain which continues after a surgical operation in a significant form for at least three months (and is not related to pre-existing painful conditions). PPSP is a common, under-recognised, and important clinical problem which affects millions of patients worldwide. Preventative measures which are currently available include the selection of a minimally invasive surgical technique and an aggressive multimodal perioperative analgesic regimen. More recently, a role for the gut microbiota in pain modulation has become increasingly apparent. This study aims to investigate any relationship between the gut microbiota and PPSP. A prospective observational study of 68 female adult patients undergoing surgery for management of breast cancer was carried out. Stool samples from 45 of these patients were obtained to analyse the composition of the gut microbiota. Measures of pain and state-trait anxiety were also taken to investigate further dimensions in any relationship between the gut microbiota and PPSP. At 12 weeks postoperatively, 21 patients (51.2%) did not have any pain and 20 patients (48.8%) reported feeling pain that persisted at that time. Analysis of the gut microbiota revealed significantly lower alpha diversity (using three measures) in those patients reporting severe pain at the 60 min post-operative and the 12 weeks post-operative timepoints. A cluster of taxa represented by Bifidobacterium longum, and Faecalibacterium prausnitzii was closely associated with those individuals reporting no pain at 12 weeks postoperatively, while Megamonas hypermegale, Bacteroides pectinophilus, Ruminococcus bromii, and Roseburia hominis clustered relatively closely in the group of patients fulfilling the criteria for persistent post-operative pain. We report for the first time specific associations between the gut microbiota composition and the presence or absence of PPSP. This may provide further insights into mechanisms behind the role of the gut microbiota in the development of PPSP and could inform future treatment strategies.


Assuntos
Neoplasias da Mama , Microbioma Gastrointestinal , Dor Pós-Operatória , Humanos , Feminino , Neoplasias da Mama/cirurgia , Dor Pós-Operatória/etiologia , Dor Pós-Operatória/microbiologia , Pessoa de Meia-Idade , Estudos Prospectivos , Adulto , Idoso , Fezes/microbiologia
2.
Int J Mol Sci ; 25(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38612702

RESUMO

Cystic fibrosis (CF) is an inherited genetic disorder which manifests primarily in airway disease. Recent advances in molecular technologies have unearthed the diverse polymicrobial nature of the CF airway. Numerous studies have characterised the genus-level composition of this airway community using targeted 16S rDNA sequencing. Here, we employed whole-genome shotgun metagenomics to provide a more comprehensive understanding of the early CF airway microbiome. We collected 48 sputum samples from 11 adolescents and children with CF over a 12-month period and performed shotgun metagenomics on the Illumina NextSeq platform. We carried out functional and taxonomic analysis of the lung microbiome at the species and strain levels. Correlations between microbial diversity measures and independent demographic and clinical variables were performed. Shotgun metagenomics detected a greater diversity of bacteria than culture-based methods. A large proportion of the top 25 most-dominant species were anaerobes. Samples dominated by Staphylococcus aureus and Prevotella melaninogenica had significantly higher microbiome diversity, while no CF pathogen was associated with reduced microbial diversity. There was a diverse resistome present in all samples in this study, with 57.8% agreement between shotgun metagenomics and culture-based methods for detection of resistance. Pathogenic sequence types (STs) of S. aureus, Pseudomonas aeruginosa, Haemophilus influenzae and Stenotrophomonas maltophilia were observed to persist in young CF patients, while STs of S. aureus were both persistent and shared between patients. This study provides new insight into the temporal changes in strain level composition of the microbiome and the landscape of the resistome in young people with CF. Shotgun metagenomics could provide a very useful one-stop assay for detecting pathogens, emergence of resistance and conversion to persistent colonisation in early CF disease.


Assuntos
Fibrose Cística , Microbiota , Criança , Humanos , Adolescente , Staphylococcus aureus , Bioensaio , DNA Ribossômico , Microbiota/genética
3.
Nutrients ; 16(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38674902

RESUMO

Fermented foods have long been known to have immunomodulatory capabilities, and fermentates derived from the lactic acid bacteria of dairy products can modulate the immune system. We have used skimmed milk powder to generate novel fermentates using Lb. helveticus strains SC234 and SC232 and we demonstrate here that these fermentates can enhance key immune mechanisms that are critical to the immune response to viruses. We show that our novel fermentates, SC234 and SC232, can positively impact on cytokine and chemokine secretion, nitric oxide (NO) production, cell surface marker expression, and phagocytosis in macrophage models. We demonstrate that the fermentates SC234 and SC232 increase the secretion of cytokines IL-1ß, IL-6, TNF-α, IL-27, and IL-10; promote an M1 pro-inflammatory phenotype for viral immunity via NO induction; decrease chemokine expression of Monocyte Chemoattractant Protein (MCP); increase cell surface marker expression; and enhance phagocytosis in comparison to their starting material. These data suggest that these novel fermentates have potential as novel functional food ingredients for the treatment, management, and control of viral infection.


Assuntos
Citocinas , Fermentação , Óxido Nítrico , Fagocitose , Citocinas/metabolismo , Animais , Óxido Nítrico/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Células RAW 264.7 , Viroses/imunologia
4.
Biomed J ; : 100701, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38281699

RESUMO

BACKGROUND: Iron deficiency is the top leading cause of anaemia, whose treatment has been shown to deteriorate gut health. However, a comprehensive analysis of the intestinal barrier and the gut microbiome during IDA have not been performed to date. This study aims to delve further into the analysis of these two aspects, which will mean a step forward minimising the negative impact of iron supplements on intestinal health. METHODS: IDA was experimentally induced in an animal model. Shotgun sequencing was used to analyse the gut microbiome in the colonic region, while the intestinal barrier was studied through histological analyses, mRNA sequencing (RNA-Seq), qPCR and immunofluorescence. Determinations of lipopolysaccharide (LPS) and bacteria-specific immunoglobulins were performed to assess microbial translocation. RESULTS: Microbial metabolism in the colon shifted towards an increased production of certain amino acids, short chain fatty acids and nucleotides, with Clostridium species being enriched during IDA. Structural alterations of the colonic epithelium were shown by histological analysis. RNA-Seq revealed a downregulation of extracellular matrix-associated genes and proteins and an overall underdeveloped epithelium. Increased levels of serum LPS and an increased immune response against dysbiotic bacteria support an impairment in the integrity of the gut barrier during IDA. CONCLUSIONS: IDA negatively impacts the gut microbiome and the intestinal barrier, triggering an increased microbial translocation. This study emphasizes the deterioration of gut health during IDA and the fact that it should be addressed when treating the disease.

5.
J Food Sci ; 89(2): 773-792, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38174642

RESUMO

A systematic approach to collect, peruse, and summarize the available information relating to the potential benefits of consuming dietary microbes was pursued in this scoping review. This review focused on the research endpoints, experimental designs, and microbial exposure in experimental as well as observational research work. Using a structured- set of keywords, scientific databases were systematically searched to retrieve publications reporting outcomes pertaining to the use of dietary microbes in healthy, nonpatient populations. Searches were further tailored to focus on eight different health categories, namely, "antibiotic associated diarrhoea" (AAD), "gastrointestinal health" (GIH), "immunological health" (ImH), "cardiovascular health and metabolic syndrome" (CvHMS), "cancer prevention" (CanPr), "respiratory health" (ReH), "weight management" (WtMgt), and "urogenital health" (UrGH). Quality of evidence available in each publication was assessed using the Jadad scoring system. The search yielded 228 relevant publications describing 282 experimental cases comprising 62 research endpoints overall. A microbial dose of ≥ 2 × 10 9 $\ge 2\times 10^9$ CFU.day-1 was associated with non-negative reported outcomes. Older population groups with a median age of 39 years were associated with positive outcomes. More high-quality research is required investigating the role of dietary microbes in maintaining general health, particularly in the health categories of UrGH, WtMgt, and CanPr.


Assuntos
Dieta , Síndrome Metabólica , Humanos , Adulto , Diarreia , Trato Gastrointestinal , Antibacterianos
6.
Obes Rev ; 24(11): e13613, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37548066

RESUMO

There is a considerable appeal for interventions that can selectively reduce either the visceral or subcutaneous white adipose tissues in humans and other species because of their associated impact on outcomes related to metabolic health. Here, we reviewed the data related to the specificity of five interventions to affect the two depots in humans and rodents. The interventions relate to the use of dietary proteins, monounsaturated fatty acids, polyunsaturated fatty acids, calorie restriction, or bariatric surgery. The available data show that calorie restriction and bariatric surgery reduce both visceral and subcutaneous tissues, whereas there is no consistency in the effect of monounsaturated or polyunsaturated fatty acids. Dietary proteins, more specifically, whey proteins show efficacy to reduce one or both depots based on how the proteins interact with other macronutrients in the diet. We provide evidence that this specificity is related to changes in the composition and the functional potential of the gut microbiota and the resulting metabolites produced by these microorganisms. The effect of the sex of the host is also discussed. This knowledge may help to develop nutritional approaches to deplete either the visceral or subcutaneous adipose tissues and improve metabolic health in humans and other species.


Assuntos
Cirurgia Bariátrica , Gordura Subcutânea , Humanos , Gordura Subcutânea/metabolismo , Restrição Calórica , Proteínas Alimentares/metabolismo , Proteínas Alimentares/farmacologia , Ácidos Graxos/metabolismo
7.
Appl Physiol Nutr Metab ; 48(9): 668-677, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37224566

RESUMO

Kefir has long been associated with health benefits; however, recent evidence suggests that these benefits are dependent on the specific microbial composition of the kefir consumed. This study aimed to compare how consumption of a commercial kefir without traditional kefir organisms and a pitched kefir containing traditional organisms affected plasma lipid levels, glucose homeostasis, and markers of endothelial function and inflammation in males with elevated LDL cholesterol. We utilized a crossover design in n = 21 participants consisting of two treatments of 4 weeks each in random order separated by a 4-week washout. Participants received either commercial kefir or pitched kefir containing traditional kefir organisms for each treatment period. Participants consumed 2 servings of kefir (350 g) per day. Plasma lipid profile, glucose, insulin, markers of endothelial function, and inflammation were measured in the fasting state before and after each treatment period. Differences within each treatment period and comparison of treatment delta values were performed using paired t tests and Wilcoxon signed-rank test, respectively. When compared to baseline, pitched kefir consumption reduced LDL-C, ICAM-1, and VCAM-1, while commercial kefir consumption increased TNF-α. Pitched kefir consumption resulted in greater reductions in IL-8, CRP, VCAM-1, and TNF-α when compared to commercial kefir consumption. These findings provide strong evidence that microbial composition is an important factor in the metabolic health benefits associated with kefir consumption. They also provide support for larger studies examining these to assess whether traditional kefir organisms are necessary to confer health benefits to individuals at risk of developing cardiovascular disease.


Assuntos
Kefir , Masculino , Humanos , LDL-Colesterol , Projetos Piloto , Fator de Necrose Tumoral alfa , Molécula 1 de Adesão de Célula Vascular , Inflamação , Glucose
8.
Int J Mol Sci ; 24(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36768196

RESUMO

Environmental factors, including westernised diets and alterations to the gut microbiota, are considered risk factors for inflammatory bowel diseases (IBD). The mechanisms underpinning diet-microbiota-host interactions are poorly understood in IBD. We present evidence that feeding a lard-based high-fat (HF) diet can protect mice from developing DSS-induced acute and chronic colitis and colitis-associated cancer (CAC) by significantly reducing tumour burden/incidence, immune cell infiltration, cytokine profile, and cell proliferation. We show that HF protection was associated with increased gut microbial diversity and a significant reduction in Proteobacteria and an increase in Firmicutes and Clostridium cluster XIVa abundance. Microbial functionality was modulated in terms of signalling fatty acids and bile acids (BA). Faecal secondary BAs were significantly induced to include moieties that can activate the vitamin D receptor (VDR), a nuclear receptor richly represented in the intestine and colon. Indeed, colonic VDR downstream target genes were upregulated in HF-fed mice and in combinatorial lipid-BAs-treated intestinal HT29 epithelial cells. Collectively, our data indicate that HF diet protects against colitis and CAC risk through gut microbiota and BA metabolites modulating vitamin D targeting pathways. Our data highlights the complex relationship between dietary fat-induced alterations of microbiota-host interactions in IBD/CAC pathophysiology.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Neoplasias , Camundongos , Animais , Vitamina D/metabolismo , Inflamação/metabolismo , Colite/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Colo/patologia , Dieta Hiperlipídica/efeitos adversos , Bactérias , Ácidos e Sais Biliares/metabolismo , Camundongos Endogâmicos C57BL , Sulfato de Dextrana/efeitos adversos , Neoplasias/metabolismo
9.
Gut Microbes ; 14(1): 2100203, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35877697

RESUMO

The gut microbiome is a vast reservoir of microbes, some of which produce antimicrobial peptides called bacteriocins that may inhibit specific bacteria associated with disease. Fusobacterium nucleatum is an emerging human bacterial pathogen associated with gastrointestinal diseases including colorectal cancer (CRC). In this study, fecal samples of healthy donors were screened for potential bacteriocin-producing probiotics with antimicrobial activity against F. nucleatum. A novel isolate, designated as Streptococcus salivarius DPC6993 demonstrated a narrow-spectrum of antimicrobial activity against F. nucleatum in vitro. In silico analysis of the S. salivarius DPC6993 genome revealed the presence of genes involved in the production of the bacteriocins salivaricin A5 and salivaricin B. After 6 h in a colon fermentation model, there was a significant drop in the number of F. nucleatum in samples that had been simultaneously inoculated with S. salivarius DPC6993 + F. nucleatum DSM15643 compared to those inoculated with F. nucleatum DSM15643 alone (mean ± SD: 9243.3 ± 3408.4 vs 29688.9 ± 4993.9 copies/µl). Furthermore, 16S rRNA amplicon analysis revealed a significant difference in the mean relative abundances of Fusobacterium between samples inoculated with both S. salivarius DPC6993 and F. nucleatum DSM15643 (0.05%) and F. nucleatum DSM15643 only (0.32%). Diversity analysis indicated minimal impact exerted by S. salivarius DPC6993 on the surrounding microbiota. Overall, this study highlights the ability of a natural gut bacterium to target a bacterial pathogen associated with CRC. The specific targeting of CRC-associated pathogens by biotherapeutics may ultimately reduce the risk of CRC development and positively impact CRC outcomes.


Assuntos
Anti-Infecciosos , Bacteriocinas , Neoplasias Colorretais , Microbioma Gastrointestinal , Streptococcus salivarius , Colo , Neoplasias Colorretais/microbiologia , Fusobacterium nucleatum/genética , Humanos , RNA Ribossômico 16S
10.
Biomolecules ; 12(6)2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35740892

RESUMO

Sex steroids, derived mainly from gonads, can shape microbiota composition; however, the impact of gonadectomy and sex on steroid production in the gut (i.e., gut steroids), and its interaction with microbiota composition, needs to be clarified. In this study, steroid environment and gut steroidogenesis were analysed by liquid chromatography tandem mass spectrometry and expression analyses. Gut microbiota composition as branched- and short-chain fatty acids were determined by 16S rRNA gene sequence analysis and gas chromatography flame ionisation detection, respectively. Here, we first demonstrated that levels of pregnenolone (PREG), progesterone (PROG), and isoallopregnanolone (ISOALLO) were higher in the female rat colon, whereas the level of testosterone (T) was higher in males. Sexual dimorphism on gut steroidogenesis is also reported after gonadectomy. Sex, and more significantly, gonadectomy, affects microbiota composition. We noted that a number of taxa and inferred metabolic pathways were associated with gut steroids, such as positive associations between Blautia with T, dihydroprogesterone (DHP), and allopregnanolone (ALLO), whereas negative associations were noted between Roseburia and T, ALLO, PREG, ISOALLO, DHP, and PROG. In conclusion, this study highlights the novel sex-specific association between microbiota and gut steroids with possible relevance for the gut-brain axis.


Assuntos
Microbiota , Pregnenolona , Animais , Castração , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Masculino , Pregnanolona , Pregnenolona/metabolismo , Progesterona/metabolismo , RNA Ribossômico 16S/genética , Ratos
11.
Ann Nutr Metab ; 78(3): 177-182, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35306495

RESUMO

INTRODUCTION: Metabolic or inflammatory markers may predict adverse outcomes in women with obesity. We sought to describe metabolic-obesity phenotypes of women using novel staging tools and investigate relationships with inflammation. METHODS: In a cross-sectional study, we collected fasting blood samples from sixty-four females with body mass index (BMI) ≥28 kg/m2. Participants were classified as metabolically healthy or metabolically unhealthy obesity (MUO) using the cardiometabolic disease staging system (CMDS) and Edmonton obesity staging system (EOSS). Data were analyzed using independent sample t tests, Pearson's correlations, and multiple logistic regression. RESULTS: Mean (SD) age was 40.2 (9.3) years with median (IQR) BMI 31.8 (30.3-35.7) kg/m2. The prevalence of MUO was 46.9% and 81.3% using CMDS and EOSS criteria, respectively. Women with raised CMDS scores had higher C3 (1.34 [0.20] vs. 1.18 [0.15], p = 0.001) and C-reactive protein (CRP) (2.89 [1.31-7.61] vs. 1.39 [0.74-3.60], p = 0.034). C3 correlated with insulin (r = 0.52), hemoglobin A1c (r = 0.37), and C-peptide (r = 0.58), all p < 0.05. C3 above the median (>1.23 g/L) increased odds of raised CMDS score, when controlled for age, BMI, ethnicity, and smoking (OR = 6.56, 95% CI: 1.63, 26.47, p = 0.008). CONCLUSION: The prevalence of MUO was lower using CMDS than EOSS. C3 and CRP may be useful clinical biomarkers of risk or treatment targets in women with obesity.


Assuntos
Doenças Cardiovasculares , Síndrome Metabólica , Biomarcadores , Índice de Massa Corporal , Proteína C-Reativa , Doenças Cardiovasculares/epidemiologia , Estudos Transversais , Feminino , Humanos , Inflamação , Obesidade/complicações , Obesidade/epidemiologia , Fenótipo , Fatores de Risco
12.
Brain Behav Immun ; 97: 119-134, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34252569

RESUMO

Autism spectrum disorder (ASD) is one of the most severe developmental disorders, affecting on average 1 in 150 children worldwide. There is a great need for more effective strategies to improve quality of life in ASD subjects. The gut microbiome has emerged as a potential therapeutic target in ASD. A novel modulator of the gut microbiome, the traditionally fermented milk drink kefir, has recently been shown to modulate the microbiota and decrease repetitive behaviour, one of the hallmarks of ASD, in mice. As such, we hypothesized that kefir could ameliorate behavioural deficits in a mouse model relevant to ASD; the BTBR T+ Itpr3tf/J mouse strain. To this end, adult mice were administered either kefir (UK4) or a milk control for three weeks as treatment lead-in, after which they were assessed for their behavioural phenotype using a battery of tests. In addition, we assessed systemic immunity by flow cytometry and the gut microbiome using shotgun metagenomic sequencing. We found that indeed kefir decreased repetitive behaviour in this mouse model. Furthermore, kefir prolonged stress-induced increases in corticosterone 60 min post-stress, which was accompanied by an ameliorated innate immune response as measured by LY6Chi monocyte levels. In addition, kefir increased the levels of anti-inflammatory Treg cells in mesenteric lymph nodes (MLNs). Kefir also increased the relative abundance of Lachnospiraceae bacterium A2, which correlated with reduced repetitive behaviour and increased Treg cells in MLNs. Functionally, kefir modulated various predicted gut microbial pathways, including the gut-brain module S-Adenosylmethionine (SAM) synthesis, as well as L-valine biosynthesis and pyruvate fermentation to isobutanol, which all correlated with repetitive behaviour. Taken together our data show that kefir modulates peripheral immunoregulation, can ameliorate specific ASD behavioural dysfunctions and modulates selective aspects of the composition and function of the gut microbiome, indicating that kefir supplementation might prove a viable strategy in improving quality of life in ASD subjects.


Assuntos
Transtorno do Espectro Autista , Microbioma Gastrointestinal , Kefir , Microbiota , Animais , Encéfalo , Camundongos , Qualidade de Vida
13.
Physiol Rep ; 9(11): e14867, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34057306

RESUMO

Whey protein isolate (WPI) is considered a dietary solution to obesity. However, the exact mechanism of WPI action is still poorly understood but is probably connected to its beneficial effect on energy balance, adiposity, and metabolism. More recently its ability to modulate the gut microbiota has received increasing attention. Here, we used a microbiota depletion, by antibiotic cocktail (ABX) administration, to investigate if the gut microbiota mediates the physiological and metabolic changes observed during high-fat diet (HFD)-WPI consumption. C57BL/6J mice received a HFD containing WPI (HFD-WPI) or the control non-whey milk protein casein (HFD-CAS) for 5 or 10 weeks. HFD-fed mice supplemented with WPI showed reduced body weight gain, adiposity, Ob gene expression level in the epidydimal adipose tissue (eWAT) and plasma leptin relative to HFD-CAS-fed mice, after 5- or 10-weeks intervention both with or without ABX treatment. Following 10-weeks intervention, ABX and WPI had an additive effect in lowering adiposity and leptin availability. HFD-WPI-fed mice showed a decrease in the expression of genes encoding pro-inflammatory markers (MCP-1, TNFα and CD68) within the ileum and eWAT, compared to HFD-CAS-fed mice, without showing alterations following microbiota depletion. Additionally, WPI supplementation decreased HFD-induced intestinal permeability disruption in the distal ileum; an effect that was reversed by chronic ABX treatment. In summary, WPI reverses the effects of HFD on metabolic and physiological functions through mainly microbiota-independent mechanisms. Moreover, we demonstrate a protective effect of WPI on HFD-induced inflammation and ileal permeability disruption, with the latter being reversed by gut microbiota depletion.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Microbioma Gastrointestinal , Obesidade/microbiologia , Proteínas do Soro do Leite/uso terapêutico , Animais , Ceco/metabolismo , Quimiocina CCL2/sangue , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/genética , Insulina/sangue , Interleucina-6/sangue , Absorção Intestinal/efeitos dos fármacos , Absorção Intestinal/fisiologia , Leptina/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/dietoterapia , Obesidade/metabolismo , RNA Ribossômico 16S , Fator de Necrose Tumoral alfa/sangue , Proteínas do Soro do Leite/metabolismo
14.
J Neurogastroenterol Motil ; 27(2): 279-291, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33795545

RESUMO

BACKGROUND/AIMS: Diarrhea-predominant irritable bowel syndrome (IBS-D) has been previously associated with evidence of immune activation and altered microbiota. Our aim is to assess the effect of the anti-inflammatory agent, mesalazine, on inflammatory gene expression and microbiota composition in IBS-D. METHODS: We studied a subset of patients (n = 43) from a previously published 12-week radomized placebo-controlled trial of mesalazine. Mucosal biopsies were assessed by immunohistochemistry and reverse transcription-polymerase chain reaction for a range of markers of inflammation, altered permeability, and sensory receptors including Toll-like receptors (TLRs) at randomization after treatment. All biopsy data were compared to 21 healthy controls. Patient's stool microbiota composition was analysed through 16S ribosomal RNA sequencing. RESULTS: We found no evidence of increased immune activation compared to healthy controls. However, we did find increased expression of receptors in both sensory pathways and innate immune response including TLR4. Higher TLR4 expression was associated with greater urgency. TLR4 expression correlated strongly with the expression of the receptors bradykinin receptor B2, chemerin chemokine-like receptor 1, and transient receptor potential cation channel, subfamily A, member 1 as well as TLR4's downstream adaptor myeloid differentiation factor 88. Mesalazine had minimal effect on either gene expression or microbiota composition. CONCLUSIONS: Biopsies from a well-characterized IBS-D cohort showed no substantial inflammation. Mesalazine has little effect on gene expression and its previous reported effect on fecal microbiota associated with much greater inflammation found in inflammatory bowel diseases is likely secondary to reduced inflammation. Increased expression of TLR4 and correlated receptors in IBS may mediate a general increase in sensitivity to external stimuli, particularly those that signal via the TLR system.

15.
Int J Mol Sci ; 22(7)2021 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-33801752

RESUMO

Bovine mastitis is a significant economic burden for dairy enterprises, responsible for premature culling, prophylactic and therapeutic antibiotic use, reduced milk production and the withholding (and thus wastage) of milk. There is a desire to identify novel antimicrobials that are expressly directed to veterinary applications, do not require a lengthy milk withholding period and that will not have a negative impact on the growth of lactic acid bacteria involved in downstream dairy fermentations. Nisin is the prototypical lantibiotic, a family of highly modified antimicrobial peptides that exhibit potent antimicrobial activity against many Gram-positive microbes, including human and animal pathogens including species of Staphylococcus and Streptococcus. Although not yet utilized in the area of human medicine, nisin is currently applied as the active agent in products designed to prevent bovine mastitis. Over the last decade, we have harnessed bioengineering strategies to boost the specific activity and target spectrum of nisin against several problematic microorganisms. Here, we screen a large bank of engineered nisin derivatives to identify novel derivatives that exhibit improved specific activity against a selection of staphylococci, including mastitis-associated strains, but have unchanged or reduced activity against dairy lactococci. Three such peptides were identified; nisin A M17Q, nisin A T2L and nisin A HTK.


Assuntos
Antibacterianos/farmacologia , Bacteriocinas/farmacologia , Lactococcus/efeitos dos fármacos , Mastite Bovina/microbiologia , Nisina/química , Staphylococcus/efeitos dos fármacos , Animais , Bioengenharia/métodos , Bovinos , Feminino , Testes de Sensibilidade Microbiana , Leite/microbiologia , Peptídeos/química , Engenharia de Proteínas/métodos
16.
Microorganisms ; 9(3)2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33652802

RESUMO

The cystic fibrosis (CF) lung harbours a diverse microbiome and reduced diversity in the CF lung has been associated with advancing age, increased inflammation and poorer lung function. Data suggest that the window for intervention is early in CF, yet there is a paucity of studies on the lung microbiome in children with CF. The objective of this study was to thoroughly characterise the lower airway microbiome in pre-school children with CF. Bronchoalveolar lavage (BAL) samples were collected annually from children attending the three clinical centres. Clinical and demographic data were collated on all subjects alongside BAL inflammatory markers. 16S rRNA gene sequencing was performed on the Illumina MiSeq platform. Bioinformatics and data analysis were performed using Qiime and R project software. Data on 292 sequenced BALs from 101 children with CF and 51 without CF show the CF lung microbiome, while broadly similar to that in non-CF children, is distinct. Alpha diversity between the two cohorts was indistinguishable at this early age. The CF diagnosis explained only 1.1% of the variation between the cohort microbiomes. However, several key genera were significantly differentially abundant between the groups. While the non-CF lung microbiome diversity increased with age, diversity reduced in CF with age. Pseudomonas and Staphylococcus were more abundant with age, while genera such as Streptococcus, Porphyromonas and Veillonella were less abundant with age. There was a negative correlation between alpha diversity and interleukin-8 and neutrophil elastase in the CF population. Neither current flucloxacillin or azithromycin prophylaxis, nor previous oral or IV antibiotic exposure, was correlated with microbiome diversity. Consecutive annual BAL samples over 5 years from a subgroup of children demonstrated diverse patterns of development in the first years of life.

17.
Artigo em Inglês | MEDLINE | ID: mdl-32257965

RESUMO

Fungi have been used since ancient times in food and beverage-making processes and, more recently, have been harnessed for the production of antibiotics and in processes of relevance to the bioeconomy. Moreover, they are starting to gain attention as a key component of the human microbiome. However, fungi are also responsible for human infections. The incidence of community-acquired and nosocomial fungal infections has increased considerably in recent decades. Antibiotic resistance development, the increasing number of immunodeficiency- and/or immunosuppression-related diseases and limited therapeutic options available are triggering the search for novel alternatives. These new antifungals should be less toxic for the host, with targeted or broader antimicrobial spectra (for diseases of known and unknown etiology, respectively) and modes of actions that limit the potential for the emergence of resistance among pathogenic fungi. Given these criteria, antimicrobial peptides with antifungal properties, i.e., antifungal peptides (AFPs), have emerged as powerful candidates due to their efficacy and high selectivity. In this review, we provide an overview of the bioactivity and classification of AFPs (natural and synthetic) as well as their mode of action and advantages over current antifungal drugs. Additionally, natural, heterologous and synthetic production of AFPs with a view to greater levels of exploitation is discussed. Finally, we evaluate the current and potential applications of these peptides, along with the future challenges relating to antifungal treatments.


Assuntos
Micoses , Preparações Farmacêuticas , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Fungos , Humanos , Micoses/tratamento farmacológico , Peptídeos
18.
Int J Mol Sci ; 21(3)2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32019270

RESUMO

The role of the gut microbiome in human health and disease is the focus of much attention. It has been widely agreed upon that our gut bacteria play a role in host immunity, nutrient absorption, digestion, metabolism, and other key drivers of health. Furthermore, certain microbial signatures and specific taxa have also been associated with the development of diseases, such as obesity; inflammatory bowel disease; and, indeed, colorectal cancer (CRC), which is the focus of this review. By extension, such taxa represent potential therapeutic targets. In particular, the emerging human pathogen Fusobacterium nucleatum represents an important agent in CRC development and its control within the gastrointestinal tract is desirable. This paper reviews the principal bacterial pathogens that have been associated with CRC to date and discusses the in vitro and human studies that have shown the potential use of biotherapeutic strains as a means of targeting CRC-associated bacteria.


Assuntos
Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Agentes de Controle Biológico/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Microbioma Gastrointestinal , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Probióticos/uso terapêutico , Bactérias/patogenicidade , Neoplasias Colorretais/microbiologia , Humanos
19.
Gut Microbes ; 11(1): 1-20, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31116628

RESUMO

The human intestinal commensal microbiota and associated metabolic products have long been regarded as contributors to host health. As the identity and activities of the various members of this community have become clearer, newly identified health-associated bacteria, such as Faecalibacterium prausnitzii, Akkermansia muciniphila, Ruminococcus bromii and Roseburia species, have emerged. Notably, the abundance of many of these bacteria is inversely correlated to several disease states. While technological and regulatory hurdles may limit the use of strains from these taxa as probiotics, it should be possible to utilize prebiotics and other dietary components to selectively enhance their growth in situ. Dietary components of potential relevance include well-established prebiotics, such as galacto-oligosaccharides, fructo-oligosaccharides and inulin, while other putative prebiotics, such as other oligosaccharides, polyphenols, resistant starch, algae and seaweed as well as host gut metabolites such as lactate and acetate, may also be applied with the aim of selectively and/or differentially affecting the beneficial bacterial community within the gastrointestinal environment. The present review provides an overview of the dietary components that could be applied in this manner.


Assuntos
Bactérias/metabolismo , Microbioma Gastrointestinal , Trato Gastrointestinal , Prebióticos/microbiologia , Probióticos/metabolismo , Bactérias/classificação , Bactérias/isolamento & purificação , Dieta , Suplementos Nutricionais , Microbioma Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/microbiologia , Humanos , Minerais/metabolismo , Oligossacarídeos/metabolismo , Polifenóis/metabolismo , Probióticos/uso terapêutico , Alga Marinha
20.
Nutrients ; 11(6)2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-31159409

RESUMO

Lactobacilli are among the most common microorganisms found in kefir; a traditional fermented milk beverage produced locally in many locations around the world. Kefir has been associated with a wide range of purported health benefits; such as antimicrobial activity; cholesterol metabolism; immunomodulation; anti-oxidative effects; anti-diabetic effects; anti-allergenic effects; and tumor suppression. This review critically examines and assesses these claimed benefits and mechanisms with regard to particular Lactobacillus species and/or strains that have been derived from kefir; as well as detailing further potential avenues for experimentation.


Assuntos
Kefir/microbiologia , Lactobacillus/fisiologia , Probióticos , Humanos , Lactobacillus/classificação , Lactobacillus/genética , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA