Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
eNeuro ; 10(12)2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38053471

RESUMO

Alcohol use disorder (AUD) is a complex psychiatric disease characterized by periods of heavy drinking and periods of withdrawal. Chronic exposure to ethanol causes profound neuroadaptations in the extended amygdala, which cause allostatic changes promoting excessive drinking. The bed nucleus of the stria terminalis (BNST), a brain region involved in both excessive drinking and anxiety-like behavior, shows particularly high levels of pituitary adenylate cyclase-activating polypeptide (PACAP), a key mediator of the stress response. Recently, a role for PACAP in withdrawal-induced alcohol drinking and anxiety-like behavior in alcohol-dependent rats has been proposed; whether the PACAP system of the BNST is also recruited in other models of alcohol addiction and whether it is of local or nonlocal origin is currently unknown. Here, we show that PACAP immunoreactivity is increased selectively in the BNST of C57BL/6J mice exposed to a chronic, intermittent access to ethanol. While pituitary adenylate cyclase-activating polypeptide (PACAP) type 1 receptor-expressing cells were unchanged by chronic alcohol, the levels of a peptide closely related to PACAP, the calcitonin gene-related neuropeptide, were found to also be increased in the BNST. Finally, using a retrograde chemogenetic approach in PACAP-ires-Cre mice, we found that the inhibition of PACAP neuronal afferents to the BNST reduced heavy ethanol drinking. Our data suggest that the PACAP system of the BNST is recruited by chronic, voluntary alcohol drinking in mice and that nonlocally originating PACAP projections to the BNST regulate heavy alcohol intake, indicating that this system may represent a promising target for novel AUD therapies.


Assuntos
Alcoolismo , Núcleos Septais , Animais , Camundongos , Ratos , Consumo de Bebidas Alcoólicas , Etanol , Camundongos Endogâmicos C57BL , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Núcleos Septais/metabolismo , Estresse Psicológico
2.
Pharmacol Biochem Behav ; 230: 173605, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37499765

RESUMO

BACKGROUND: Anxiety disorders are the most prevalent psychiatric disorders, and they are highly comorbid with chronic pain conditions. The central nucleus of the amygdala (CeA) is known not only for its role in the regulation of anxiety but also as an important site for the negative affective dimension of pain. Pituitary adenylate cyclase activating polypeptide (PACAP), a neuropeptide whose terminals are abundant in the CeA, is strongly implicated in the stress response as well as in pain processing. Here, using Cre-dependent viral vectors, we explored in greater detail the role of the PACAP projection to the CeA that originates in the lateral parabrachial nucleus (LPB). METHODS: We first performed a circuit mapping experiment by injecting an anterograde Cre-dependent virus expressing a fluorescent reporter in the LPB of PACAP-Cre mice and observing their projections. Then, we used a chemogenetic approach (a Cre-dependent Designer Receptors Activated by Designer Drugs, DREADDs) to assess the effects of the direct stimulation of the PACAP LPB to CeA projection on general locomotor activity, anxiety-like behavior (using a defensive withdrawal test), and mechanical pain sensitivity (using the von Frey test). RESULTS: We found that the CeA, together with other areas, is one of the major downstream projection targets of PACAP neurons originating in the lateral parabrachial nucleus (LPB). In the DREADD experiment, we then found that the selective activation of this neuronal pathway is sufficient to increase both anxiety-like behavior and mechanical pain sensitivity in mice, without affecting general locomotor activity. CONCLUSION: In conclusion, our data suggest that the dysregulation of this circuit may contribute to a variety of anxiety disorders and chronic pain states, and that PACAP may represent an important therapeutic target for the treatment of these conditions.


Assuntos
Núcleo Central da Amígdala , Dor Crônica , Camundongos , Animais , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Núcleo Central da Amígdala/metabolismo , Hiperalgesia/metabolismo , Dor Crônica/metabolismo , Ansiedade/metabolismo , Doença Crônica , Neurônios/metabolismo
3.
eNeuro ; 9(5)2022.
Artigo em Inglês | MEDLINE | ID: mdl-36566434

RESUMO

Many psychiatric diseases stem from an inability to cope with stressful events, as chronic stressors can precipitate or exacerbate psychopathologies. The neurobiological mechanisms underlying the response to chronic stress and the resulting anxiety states remain poorly understood. Stress neuropeptides in the extended amygdala circuitry mediate the behavioral response to stress, and hyperactivity of these systems has been hypothesized to be responsible for the emergence of persistent negative outcomes and for the pathogenesis of anxiety-related and trauma-related disorders. Pituitary adenylate cyclase-activating polypeptide (PACAP) and its receptor PAC1R are highly expressed within the central amygdala (CeA) and play a key role in stress regulation. Here, we used chronic social defeat stress (CSDS), a clinically relevant model of psychosocial stress that produces robust maladaptive behaviors in rodents. We found that 10 days of CSDS cause a significant increase in PACAP levels selectively in the CeA of rats, as well as an increase in PAC1R mRNA. Using a viral vector strategy, we found that PAC1R knock-down in the CeA attenuates the CSDS-induced body weight loss and prevents the CSDS-induced increase in anxiety-like behavior. Notably, CSDS animals display reduced basal corticosterone (CORT) levels and PAC1R knock-down in CeA further reduce them. Finally, the CeA PAC1R knock-down blocks the increase in corticotropin-releasing factor (CRF) immunoreactivity induced by CSDS in CeA. Our findings support the notion that the persistent activation of the PACAP-PAC1R system in the CeA mediates the behavioral outcomes of chronic psychosocial stress independently of the hypothalamic-pituitary-adrenal axis, perhaps via the recruitment of the CRF system.


Assuntos
Adaptação Psicológica , Núcleo Central da Amígdala , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Derrota Social , Estresse Psicológico , Animais , Ratos , Núcleo Central da Amígdala/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Estresse Psicológico/metabolismo
4.
Neuropharmacology ; 212: 109063, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35460713

RESUMO

Alcohol use disorders (AUD) have a strong component of heritability; however, the neurobiological mechanisms mediating the propensity to consume excessive amounts of alcohol are still not well understood. Pituitary adenylate cyclase-activating polypeptide (PACAP), a highly conserved neuropeptide which exerts its effects mainly through the PAC1 receptor (PAC1R), has been suggested to be one of the mediators of the effects of drugs of abuse and alcohol. Here, we investigated the role of the PACAP/PAC1R system in excessive alcohol drinking in alcohol-preferring rats, an established animal model of AUD. Intracerebroventricular (i.c.v.) administration of the PAC1R antagonist PACAP(6-38) blocked excessive alcohol drinking and motivation to drink in Sardinian alcohol-preferring (Scr:sP) rats, without affecting water, saccharin, or sucrose intake. Notably, PACAP(6-38) did not affect ethanol responding in outbred Wistar rats. PACAP(6-38) also significantly reduced alcohol-seeking behavior under a second-order schedule of reinforcement. Using immunohistochemistry, a significant increase in the number of PAC1R positive cells was observed selectively in the nucleus accumbens (NAcc) Core of Scr:sP rats, compared to Wistar rats, following alcohol drinking. Finally, excessive drinking in Scr:sP rats was suppressed by intra-NAcc Core, but not intra-NAcc Shell, PACAP(6-38), as well as by virally-mediated PAC1R knockdown in the NAcc Core. The present study shows that hyperactivity of the PACAP/PAC1R system specifically in the NAcc Core mediates excessive drinking of alcohol-preferring rats, and indicates that this system may represent a novel target for the treatment of AUD.


Assuntos
Consumo de Bebidas Alcoólicas , Alcoolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Consumo de Bebidas Alcoólicas/tratamento farmacológico , Consumo de Bebidas Alcoólicas/metabolismo , Alcoolismo/tratamento farmacológico , Alcoolismo/metabolismo , Animais , Núcleo Accumbens/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Ratos , Ratos Wistar , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/antagonistas & inibidores , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo
5.
Front Behav Neurosci ; 15: 787362, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34924973

RESUMO

Alcohol use disorder (AUD) is a chronic, relapsing disorder whose genetic and environmental susceptibility components are not fully understood. Neuropeptidergic signaling has been repeatedly implicated in modulating excessive alcohol drinking, especially within sub-regions of the striatum. Here, we investigated the potential involvement of the selective receptor for pituitary adenylate cyclase-activating polypeptide (PACAP), PAC1R, in the nucleus accumbens shell (NAcc Shell) in excessive alcohol drinking in alcohol-preferring rats, an established animal model of the genetic propensity for alcoholism. Scr:sP alcohol-preferring rats were trained to operantly self-administer alcohol and then either an AAV virus short-hairpin RNA (shRNA) targeted to knockdown PAC1R, or an AAV control virus were microinfused into the NAcc Shell. NAcc Shell PAC1R shRNA knockdown virus was confirmed to significantly decrease PAC1R levels in the NAcc Shell. The effects of NAcc Shell PAC1R shRNA knockdown on ethanol self-administration were investigated using a Fixed Ratio (FR) 1 and a Progressive Ratio (PR) schedule of reinforcement. The effect of PAC1R knockdown on self-administration of an alternative reinforcer, saccharin, was also assessed. The results showed that the reduction in PAC1R in the NAcc Shell led to excessive ethanol drinking, increased preference for ethanol, and higher motivation to drink. NAcc Shell PAC1R shRNA knockdown did not comparably increase saccharin self-administration, suggesting selectivity of action. These data suggest that NAcc Shell PAC1R may serves as a "brake" on alcohol drinking, and thereby the loss of function of PAC1R leads to excessive alcohol consumption. Therefore, the PACAP/PAC1R system may represent a novel target for the treatment of AUD.

6.
Neuropsychopharmacology ; 46(3): 509-518, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33191400

RESUMO

Alcohol use disorder (AUD) is a devastating illness defined by periods of heavy drinking and withdrawal, often leading to a chronic relapsing course. Initially, alcohol is consumed for its positive reinforcing effects, but later stages of AUD are characterized by drinking to alleviate withdrawal-induced negative emotional states. Brain stress response systems in the extended amygdala are recruited by excessive alcohol intake, sensitized by repeated withdrawal, and contribute to the development of addiction. In this study, we investigated one such brain stress response system, pituitary adenylate cyclase-activating polypeptide (PACAP), and its cognate receptor, PAC1R, in alcohol withdrawal-induced behaviors. During acute withdrawal, rats exposed to chronic intermittent ethanol vapor (ethanol-dependent) displayed a significant increase in PACAP levels in the bed nucleus of the stria terminalis (BNST), a brain area within the extended amygdala critically involved in both stress and withdrawal. No changes in PACAP levels were observed in the central nucleus of the amygdala. Site-specific microinfusion of the PAC1R antagonist PACAP(6-38) into the BNST dose-dependently blocked excessive alcohol intake in ethanol-dependent rats without affecting water intake overall or basal ethanol intake in control, nondependent rats. Intra-BNST PACAP(6-38) also reversed ethanol withdrawal-induced anxiety-like behavior in ethanol-dependent rats, but did not affect this measure in control rats. Our findings show that chronic intermittent exposure to ethanol recruits the PACAP/PAC1R system of the BNST and that these neuroadaptations mediate the heightened alcohol drinking and anxiety-like behavior observed during withdrawal, suggesting that this system represents a major brain stress element responsible for the negative reinforcement associated with the "dark side" of alcohol addiction.


Assuntos
Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Núcleos Septais , Consumo de Bebidas Alcoólicas , Animais , Ansiedade/tratamento farmacológico , Emoções , Masculino , Ratos , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Núcleos Septais/metabolismo
7.
Neuropharmacology ; 160: 107761, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31493466

RESUMO

Anxiety-related disorders are the most prevalent mental disorders in the world and they are characterized by abnormal responses to stressors. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide highly expressed in the extended amygdala, a brain macrostructure involved in the response to threat that includes the central nucleus of the amygdala (CeA) and the bed nucleus of the stria terminalis (BNST). The aim of this series of experiments was to systematically elucidate the role of the PACAP system of the CeA and BNST under both control, unstressed conditions and after the presentation of a stressor in rats. For this purpose, we used the acoustic startle response (ASR), an unconscious response to sudden acoustic stimuli sensitive to changes in stress which can be used as an operationalization of the hypervigilance present in anxiety- and trauma-related disorders. We found that infusion of PACAP, but not the related peptide vasoactive intestinal peptide (VIP), into either the CeA or the BNST causes a dose-dependent increase in ASR. In addition, while infusion of the antagonist PACAP(6-38) into either the CeA or the BNST does not affect ASR in non-stressed conditions, it prevents the sensitization of ASR induced by an acute footshock stress. Finally, we found that footshock stress induces a significant increase in PACAP, but not VIP, levels in both of these brain areas. Altogether, these data show that the PACAP system of the extended amygdala contributes to stress-induced hyperarousal and suggest it as a potential novel target for the treatment of stress-related disorders.


Assuntos
Núcleo Central da Amígdala/efeitos dos fármacos , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Reflexo de Sobressalto/efeitos dos fármacos , Núcleos Septais/efeitos dos fármacos , Estresse Psicológico , Animais , Ansiedade/metabolismo , Ansiedade/patologia , Comportamento Animal/efeitos dos fármacos , Núcleo Central da Amígdala/metabolismo , Masculino , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/administração & dosagem , Ratos , Ratos Wistar , Núcleos Septais/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo
8.
Neuropsychopharmacology ; 42(7): 1375-1389, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27922596

RESUMO

Compulsive eating behavior is a transdiagnostic construct that is characteristic of medical and psychiatric conditions such as forms of obesity and eating disorders. Although feeding research is moving toward a better understanding of the proposed addictive properties of food, the components and the mechanisms contributing to compulsive eating are not yet clearly defined or understood. Current understanding highlights three elements of compulsive behavior as it applies to pathological overeating: (1) habitual overeating; (2) overeating to relieve a negative emotional state; and (3) overeating despite aversive consequences. These elements emerge through mechanisms involving pathological habit formation through an aberrant learning process, the emergence of a negative emotional state, and dysfunctions in behavioral control. Dysfunctions in systems within neurocircuitries that comprise the basal ganglia, the extended amygdala, and the prefrontal cortex result in compulsive eating behaviors. Here, we present evidence to relate compulsive eating behavior and addiction and to characterize their underlying neurobiological mechanisms. A major need to improve understanding of compulsive eating through the integration of complex motivational, emotional, and cognitive constructs is warranted.


Assuntos
Comportamento Compulsivo/diagnóstico , Comportamento Compulsivo/psicologia , Hiperfagia/diagnóstico , Hiperfagia/psicologia , Tonsila do Cerebelo/fisiologia , Comportamento Aditivo/diagnóstico , Comportamento Aditivo/genética , Comportamento Aditivo/psicologia , Comportamento Compulsivo/genética , Humanos , Hiperfagia/genética , Rede Nervosa/fisiologia , Córtex Pré-Frontal/fisiologia
9.
Psychopharmacology (Berl) ; 233(17): 3269-77, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27376948

RESUMO

RATIONALE: Anxiety disorders are the most common mental disorders in the USA. Characterized by feelings of uncontrollable apprehension, they are accompanied by physical, affective, and behavioral symptoms. The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) and its receptor PAC1 (PAC1R) are highly expressed in the central nucleus of the amygdala (CeA), and they have gained growing attention for their proposed role in mediating the body's response to stress. OBJECTIVES: The aim of this study was to evaluate the anxiogenic effects of PACAP in the CeA and its effects on the hypothalamic-pituitary-adrenal (HPA) axis. Furthermore, the mechanism of action of PACAP in the CeA was investigated. METHODS: PACAP was microinfused into the CeA of rats, and its effects in the elevated plus maze (EPM), the defensive withdrawal tests, and plasma corticosterone levels were evaluated. The ability of the melanocortin receptor antagonist SHU9119 to block PACAP effect in the EPM was assessed. RESULTS: Intra-CeA PACAP exerted a dose-dependent anxiogenic effect and activated the HPA axis. In contrast, PACAP microinfused into the basolateral nucleus of the amygdala (BlA) had no effect. Finally, the anxiogenic effect of intra-CeA PACAP was prevented by SHU9119. CONCLUSIONS: These data prove an anxiogenic role for the PACAP system of the CeA and reveal that the melanocortin receptor 4 (MC4R) system of CeA mediates these effects. Our data provide insights into this neuropeptide system as a mechanism for modulating the behavioral and endocrine response to stress and suggest that dysregulations of this system may contribute to the pathophysiology of anxiety-related disorders.


Assuntos
Ansiedade , Comportamento Animal/efeitos dos fármacos , Núcleo Central da Amígdala/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Neurotransmissores/farmacologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Receptor Tipo 4 de Melanocortina/efeitos dos fármacos , Animais , Transtornos de Ansiedade , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Complexo Nuclear Basolateral da Amígdala/metabolismo , Núcleo Central da Amígdala/metabolismo , Corticosterona/sangue , Emoções/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/metabolismo , Masculino , Hormônios Estimuladores de Melanócitos/farmacologia , Sistema Hipófise-Suprarrenal/metabolismo , Ratos , Receptor Tipo 4 de Melanocortina/metabolismo , Receptores de Melanocortina/antagonistas & inibidores , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo
10.
Psychopharmacology (Berl) ; 232(20): 3821-31, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26264905

RESUMO

BACKGROUND: Major depressive disorder (MDD) is a chronic, life-threatening psychiatric condition characterized by depressed mood, psychomotor alterations, and a markedly diminished interest or pleasure in most activities known as anhedonia. Available pharmacotherapies have limited success and the need for new strategies is clear. Recent studies attribute a major role to the pituitary adenylate cyclase-activating polypeptide (PACAP) system in mediating the response to stress. PACAP knockout mice display profound alterations in depressive-like behaviors, and genetic association studies have demonstrated that genetic variants of the PACAP gene are associated with MDD. However, the effects of PACAP administration on depressive-like behaviors in rodents have not yet been systematically examined. OBJECTIVES: The present study investigated the effects of central administration of PACAP in rats on depressive-like behaviors, using well-established animal models that represent some of the endophenotypes of depression. METHODS: We used intracranial self-stimulation (ICSS) to assess the brain reward function, saccharin preference test to assess anhedonia, social interaction to assess social withdrawal, and forced swim test (FST) to assess behavioral despair. RESULTS: PACAP raised the current threshold for ICSS, elevation blocked by the PACAP antagonist PACAP(6-38). PACAP reduced the preference for a sweet saccharin solution and reduced the time the rats spent interacting with a novel animal. Interestingly, PACAP administration did not affect immobility in the FST. CONCLUSIONS: Our results demonstrate a role for the central PACAP/PAC1R system in the regulation of depressive-like behaviors and suggest that hyperactivity of the PACAP/PAC1R system may contribute to the pathophysiology of depression, particularly the associated anhedonic symptomatology and social dysfunction.


Assuntos
Depressão/induzido quimicamente , Depressão/metabolismo , Fenótipo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/administração & dosagem , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/toxicidade , Adenilil Ciclases/metabolismo , Animais , Depressão/psicologia , Relação Dose-Resposta a Droga , Infusões Intraventriculares , Masculino , Ratos , Ratos Wistar
11.
Neuropsychopharmacology ; 40(8): 1846-55, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25649277

RESUMO

Growing evidence suggests that the pituitary adenylate cyclase-activating polypeptide (PACAP)/PAC1 receptor system represents one of the main regulators of the behavioral, endocrine, and autonomic responses to stress. Although induction of anorexia is a well-documented effect of PACAP, the central sites underlying this phenomenon are poorly understood. The present studies addressed this question by examining the neuroanatomical, behavioral, and pharmacological mechanisms mediating the anorexia produced by PACAP in the central nucleus of the amygdala (CeA), a limbic structure implicated in the emotional components of ingestive behavior. Male rats were microinfused with PACAP (0-1 µg per rat) into the CeA and home-cage food intake, body weight change, microstructural analysis of food intake, and locomotor activity were assessed. Intra-CeA (but not intra-basolateral amygdala) PACAP dose-dependently induced anorexia and body weight loss without affecting locomotor activity. PACAP-treated rats ate smaller meals of normal duration, revealing that PACAP slowed feeding within meals by decreasing the regularity and maintenance of feeding from pellet-to-pellet; postprandial satiety was unaffected. Intra-CeA PACAP-induced anorexia was blocked by coinfusion of either the melanocortin receptor 3/4 antagonist SHU 9119 or the tyrosine kinase B (TrKB) inhibitor k-252a, but not the CRF receptor antagonist D-Phe-CRF(12-41). These results indicate that the CeA is one of the brain areas through which the PACAP system promotes anorexia and that PACAP preferentially lessens the maintenance of feeding in rats, effects opposite to those of palatable food. We also demonstrate that PACAP in the CeA exerts its anorectic effects via local melanocortin and the TrKB systems, and independently from CRF.


Assuntos
Anorexia/induzido quimicamente , Peso Corporal/efeitos dos fármacos , Núcleo Central da Amígdala/efeitos dos fármacos , Melanocortinas/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Receptor trkB/metabolismo , Vasodilatadores/farmacologia , Análise de Variância , Animais , Hormônio Liberador da Corticotropina/análogos & derivados , Hormônio Liberador da Corticotropina/farmacologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Ingestão de Alimentos/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Masculino , Hormônios Estimuladores de Melanócitos/farmacologia , Atividade Motora/efeitos dos fármacos , Ratos , Ratos Wistar , Fatores de Tempo
12.
Neuropsychopharmacology ; 39(10): 2463-72, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24776685

RESUMO

Impulsivity is a behavioral trait frequently seen not only in drug-addicted individuals but also in individuals who pathologically overeat. However, whether impulsivity predates the development of uncontrollable feeding is unknown. In this study, we hypothesized that a high impulsivity trait precedes and confers vulnerability for food addiction-like behavior. For this purpose, we trained ad libitum-fed male Wistar rats in a differential reinforcement of low rates of responding (DRL) task to select Low- and High-impulsive rats. Then, we allowed Low- and High-impulsive rats to self-administer a highly palatable diet (Palatable group) or a regular chow diet (Chow group) in 1-h daily sessions, under fixed ratio (FR) 1, FR3, FR5, and under a progressive ratio (PR) schedules of reinforcement. In addition, we tested the compulsiveness for food in Low- and High-impulsive rats by measuring the food eaten in the aversive, open compartment of a light/dark conflict test. Finally, we measured the expression of the transcription factor ΔFosB in the shell and the core of the nucleus accumbens, which is a marker for neuroadaptive changes following addictive drug exposure. The data we obtained demonstrate that impulsivity is a trait that predicts the development of food addiction-like behaviors, including: (i) excessive intake, (ii) heightened motivation for food, and (iii) compulsive-like eating, when rats are given access to highly palatable food. In addition, we show that the food addiction phenotype in high impulsive subjects is characterized by an increased expression of the transcription factor ΔFosB in the nucleus accumbens shell. These results reveal that impulsivity confers an increased propensity to develop uncontrollable overeating of palatable food.


Assuntos
Comportamento Aditivo/fisiopatologia , Comportamento Alimentar/fisiologia , Comportamento Impulsivo/fisiologia , Núcleo Accumbens/fisiopatologia , Personalidade/fisiologia , Animais , Ansiedade/fisiopatologia , Bulimia/fisiopatologia , Comportamento Exploratório/fisiologia , Masculino , Motivação/fisiologia , Atividade Motora/fisiologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos Wistar , Esquema de Reforço , Autoadministração
13.
Neuropsychopharmacology ; 38(11): 2160-9, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23657440

RESUMO

Anxiety disorders represent the most common mental disturbances in the world, and they are characterized by an abnormal response to stress. Pituitary adenylate cyclase-activating polypeptide (PACAP) and its receptor PAC1 have been proposed to have a key role in mediating the responses to stress as well as the regulation of food intake and body weight. Corticotropin-releasing factor (CRF), the major stress peptide in the brain, has been hypothesized to be involved in PACAP effects, but the reports are conflicting so far. The present study was aimed at further characterizing the behavioral effects of PACAP in rats and at determining the role of central CRF receptors. We found that intracerebroventricular PACAP treatment induced anxiety-like behavior in the elevated plus maze test and elevated intracranial self-stimulation thresholds; both of these effects were fully blocked by concurrent treatment with the CRF receptor antagonist D-Phe-CRF(12-41). Interestingly, the CRF antagonist had no effect on PACAP-induced increased plasma corticosterone, reduction of food intake, and body weight loss. Finally, we found that PACAP increased CRF levels in the paraventricular nucleus of the hypothalamus and, importantly, in the central nucleus of the amygdala, as measured by solid phase radioimmunoassay and quantitative real-time PCR. Our results strengthen the notion that PACAP is a strong mediator of the behavioral response to stress and prove for the first time that this neuropeptide has anti-rewarding (ie, pro-depressant) effects. In addition, we identified the mechanism by which PACAP exerts its anxiogenic and pro-depressant effects, via the recruitment of the central CRF system and independently from HPA axis activation.


Assuntos
Ansiedade/induzido quimicamente , Hormônio Liberador da Corticotropina/fisiologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Receptores de Hormônio Liberador da Corticotropina/antagonistas & inibidores , Recompensa , Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/metabolismo , Animais , Ansiedade/sangue , Ansiedade/fisiopatologia , Peso Corporal/efeitos dos fármacos , Corticosterona/sangue , Hormônio Liberador da Corticotropina/análogos & derivados , Hormônio Liberador da Corticotropina/metabolismo , Ingestão de Alimentos/efeitos dos fármacos , Infusões Intraventriculares , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/metabolismo , Peptídeos/farmacologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/administração & dosagem , Ratos , Autoestimulação/efeitos dos fármacos
14.
Brain Res ; 1339: 11-7, 2010 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-20380822

RESUMO

The anterior cingulate cortex (ACC) has been implicated in alcohol and drug addiction. We recently identified the small G protein K-ras as an alcohol-regulated gene in the ACC by gene expression analysis. We show here that the adiponectin receptor 2 (AdipoR2) was differentially regulated by alcohol in the ACC in a K-ras-dependent manner. Additionally, withdrawal-associated increased drinking was attenuated in AdipoR2 null mice. Intracellular recordings revealed that adiponectin increased the excitability of ACC neurons and that this effect was more pronounced during alcohol withdrawal, suggesting that AdipoR2 signaling may contribute to increased ACC activity. Altogether, the data implicate K-ras-regulated pathways involving AdipoR2 in the cellular and behavioral actions of alcohol that may contribute to overactivity of the ACC during withdrawal and excessive alcohol drinking.


Assuntos
Adiponectina/metabolismo , Consumo de Bebidas Alcoólicas/metabolismo , Etanol/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Genes ras , Receptores de Adiponectina/metabolismo , Consumo de Bebidas Alcoólicas/genética , Animais , Etanol/toxicidade , Perfilação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos
15.
Addict Biol ; 14(2): 130-43, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19291009

RESUMO

Dysregulation of the stress-related corticotropin-releasing factor (CRF) system has been implicated in the development of drug dependence. The present study examined the effects of administering CRF type 1 (CRF(1)) receptor antagonists on heroin self-administration in animals allowed short (1 hour) or long (8-12 hours) access to intravenous heroin self-administration sessions. The nonpeptide CRF(1) antagonists MJL-1-109-2 (1 hour versus 8 hours access) or R121919 (1 hour versus 12 hours access) were systemically injected in both short- and long-access rats. MJL-1-109-2 (10 mg/kg) and R121919 (10 and 20 mg/kg) reduced heroin self-administration in long-access animals without altering heroin intake in short-access animals. Both MJL-1-109-2 and R121919 decreased first-hour intravenous heroin self-administration selectively in long-access rats, with R121919 decreasing cumulative heroin intake across the 12-hour session. The results demonstrate that blockade of the CRF-CRF(1) receptor system attenuates the increased heroin intake of rats with extended access to the drug.


Assuntos
Dependência de Heroína/prevenção & controle , Receptores de Hormônio Liberador da Corticotropina/antagonistas & inibidores , Triazinas/farmacologia , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Masculino , Pirimidinas/farmacologia , Ratos , Ratos Wistar , Autoadministração , Fatores de Tempo , Triazinas/administração & dosagem
16.
Pharmacol Biochem Behav ; 91(3): 295-302, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18703080

RESUMO

Previous studies have reported that noradrenergic antagonists alleviate some of the symptoms of opiate withdrawal and dependence. Clinical studies also have shown that modification of the noradrenergic system may help protect patients from relapse. The present study tested the hypothesis that a dysregulated noradrenergic system has motivational significance in heroin self-administration of dependent rats. Prazosin, an alpha1-adrenergic antagonist (0.5, 1.0, 1.5 and 2.0 mg/kg, i.p.), was administered to adult male Wistar rats with a history of limited (1 h/day; short access) or extended (12 h/day; long access) access to intravenous heroin self-administration. Prazosin dose-dependently reduced heroin self-administration in long-access rats but not short-access rats, with 2 mg/kg of systemic prazosin significantly decreasing 1 h and 2 h heroin intake. Prazosin also reversed some changes in meal pattern associated with extended heroin access, including the taking of smaller and briefer meals (at 3 h), while also increasing total food intake and slowing the eating rate within meals (both 3 h and 12 h). Thus, prazosin appears to stimulate food intake in extended access rats by restoring meals to the normal size and duration. The data suggest that the alpha1 adrenergic system may contribute to mechanisms that promote dependence in rats with extended access.


Assuntos
Agonistas de Receptores Adrenérgicos alfa 1 , Antagonistas Adrenérgicos alfa/farmacologia , Dependência de Heroína/tratamento farmacológico , Dependência de Heroína/psicologia , Prazosina/farmacologia , Animais , Condicionamento Operante/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ingestão de Líquidos/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Heroína/administração & dosagem , Masculino , Entorpecentes/administração & dosagem , Ratos , Ratos Wistar , Esquema de Reforço , Autoadministração , Abuso de Substâncias por Via Intravenosa
17.
Am J Physiol Regul Integr Comp Physiol ; 295(4): R1066-76, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18667718

RESUMO

Intermittent, extended access to preferred diets increases their intake. However, the effects of such access on the acceptance and reinforcing efficacy of otherwise satisfying alternatives is less known. To investigate the role of nonnutritional contributions to the hypophagia that follows removal of preferred food, male Wistar rats were fed a chow diet (Chow A/I), preferred to their regular chow (Chow), which was equally consumed under 1-choice conditions to an even more preferred chocolate-flavored, sucrose-rich diet (Preferred). Rats then learned to obtain Chow A/I pellets under a progressive ratio schedule of reinforcement and were assigned to two matched groups. Each week, one group (n = 15) was diet-cycled, receiving Chow A/I for 5 days followed by the Preferred diet for 2 days. Controls received Chow A/I daily (n = 14). Progressive ratio sessions were performed daily during the 5 days that all subjects received Chow A/I in the home cage. Across 5 wk, diet-cycled rats progressively ate less of the otherwise palatable Chow A/I diet. Hypophagia was not due to greater prior intake or weight gain, motor impairment, or facilitated satiation and was associated with changes in progressive ratio performance that suggested a reduced reinforcing efficacy of the Chow A/I diet in diet-cycled animals. By week 4, diet-cycled animals began to overeat the preferred diet, especially during the first 6 h of renewed access, resembling a deprivation effect. The results suggest that intermittent access to highly preferred food, as practiced by many restrained eaters, may progressively decrease the acceptability of less palatable foods, and may promote relapse to more rewarding alternatives.


Assuntos
Ingestão de Alimentos/fisiologia , Comportamento Alimentar/fisiologia , Preferências Alimentares/fisiologia , Reforço Psicológico , Animais , Peso Corporal/fisiologia , Dieta , Ingestão de Energia/fisiologia , Privação de Alimentos/fisiologia , Hiperfagia/fisiopatologia , Masculino , Ratos , Ratos Wistar
18.
Proc Natl Acad Sci U S A ; 104(43): 17198-203, 2007 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-17921249

RESUMO

Nicotine, the main psychoactive ingredient of tobacco, induces negative emotional symptoms during abstinence that contribute to a profound craving for nicotine. However, the neurobiological mechanisms underlying how nicotine produces dependence remains poorly understood. We demonstrate one mechanism for both the anxiety-like symptoms of withdrawal and excessive nicotine intake observed after abstinence, through recruitment of the extrahypothalamic stress peptide corticotropin-releasing factor (CRF) system and activation of CRF(1) receptors. Overactivation of the CRF-CRF(1) system may contribute to nicotine dependence and may represent a prominent target for investigating the vulnerability to tobacco addiction.


Assuntos
Hormônio Liberador da Corticotropina/metabolismo , Nicotina/administração & dosagem , Nicotina/farmacologia , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Síndrome de Abstinência a Substâncias/metabolismo , Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/metabolismo , Animais , Ansiedade , Comportamento Aditivo , Comportamento Animal/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Masculino , Mecamilamina/farmacologia , Nicotina/efeitos adversos , Ratos , Ratos Wistar , Receptores de Hormônio Liberador da Corticotropina/antagonistas & inibidores , Autoadministração
19.
J Physiol ; 583(Pt 2): 487-504, 2007 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-17627984

RESUMO

With one billion people overweight worldwide, the need to identify risk factors and treatments for obesity is urgent. The present study determined whether rats genetically prone to diet-induced obesity (DIO) show preexisting differences in meal microstructure and are sensitive to central anorectic effects of corticotropin-releasing factor type 2 (CRF(2)) receptor stimulation. Male, selectively bred DIO rats and their diet resistant (DR) counterparts (n = 9/genotype) were weaned onto low-fat chow and compared as young adults for spontaneous or intracerebroventricular urocortin 2 administration-induced (0, 0.3, 1, 3 microg) differences in ingestion. DIO rats were hyperphagic selectively at the dark cycle onset, showing shorter latencies to initiate feeding, faster returns to eating following meal completion, and a lower satiety ratio than DR rats. At other times, DIO rats had briefer postmeal intervals, but ate smaller and briefer meals, resulting in normal intake. DIO rats also ate faster than DR rats. Urocortin 2 was less potent in DIO rats, ineffective at the 0.3 microg dose, but produced CRF(2) antagonist-reversible anorexia at higher doses. Though heavier, chow-maintained DIO rats were proportionately as or more lean than DR rats. Thus, DIO rats showed signs of a preexisting, heritable deficit in the maintenance of postmeal satiety and a reduced sensitivity to anorectic CRF(2) agonist stimulation. The meal patterns of DIO rats temporally resemble human 'snacking' behaviour, which predicts adult obesity. Because central CRF(2) stimulation retains full anorectic efficacy at higher doses in the DIO model, manipulating this neuropeptidergic system might yield new therapeutic approaches for diet-induced obesity.


Assuntos
Depressores do Apetite/metabolismo , Comportamento Animal , Encéfalo/metabolismo , Comportamento Alimentar , Hiperfagia/metabolismo , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Urocortinas/metabolismo , Tecido Adiposo/metabolismo , Animais , Depressores do Apetite/administração & dosagem , Comportamento Animal/efeitos dos fármacos , Composição Corporal , Peso Corporal , Encéfalo/efeitos dos fármacos , Hormônio Liberador da Corticotropina/metabolismo , Hormônio Liberador da Corticotropina/farmacologia , Dieta/efeitos adversos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Ingestão de Líquidos , Comportamento Alimentar/efeitos dos fármacos , Genótipo , Hiperfagia/etiologia , Hiperfagia/genética , Hiperfagia/fisiopatologia , Injeções Intraventriculares , Masculino , Obesidade/etiologia , Obesidade/genética , Obesidade/metabolismo , Obesidade/fisiopatologia , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/farmacologia , Fenótipo , Ratos , Ratos Mutantes , Receptores de Hormônio Liberador da Corticotropina/efeitos dos fármacos , Fatores de Tempo , Urocortinas/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA