Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
bioRxiv ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38895459

RESUMO

Biological sex is an important risk factor in cancer, but the underlying cell types and mechanisms remain obscure. Since tumor development is regulated by the immune system, we hypothesize that sex-biased immune interactions underpin sex differences in cancer. The male-biased glioblastoma multiforme (GBM) is an aggressive and treatment-refractory tumor in urgent need of more innovative approaches, such as considering sex differences, to improve outcomes. GBM arises in the specialized brain immune environment dominated by microglia, so we explored sex differences in this immune cell type. We isolated adult human TAM-MGs (tumor-associated macrophages enriched for microglia) and control microglia and found sex-biased inflammatory signatures in GBM and lower-grade tumors associated with pro-tumorigenic activity in males and anti-tumorigenic activity in females. We demonstrated that genes expressed or modulated by the inactive X chromosome facilitate this bias. Together, our results implicate TAM-MGs, specifically their sex chromosomes, as drivers of male bias in GBM.

2.
Nat Cancer ; 5(5): 791-807, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38228835

RESUMO

Brain tumors in children are a devastating disease in a high proportion of patients. Owing to inconsistent results in clinical trials in unstratified patients, the role of immunotherapy remains unclear. We performed an in-depth survey of the single-cell transcriptomes and clonal relationship of intra-tumoral T cells from children with brain tumors. Our results demonstrate that a large fraction of T cells in the tumor tissue are clonally expanded with the potential to recognize tumor antigens. Such clonally expanded T cells display enrichment of transcripts linked to effector function, tissue residency, immune checkpoints and signatures of neoantigen-specific T cells and immunotherapy response. We identify neoantigens in pediatric brain tumors and show that neoantigen-specific T cell gene signatures are linked to better survival outcomes. Notably, among the patients in our cohort, we observe substantial heterogeneity in the degree of clonal expansion and magnitude of T cell response. Our findings suggest that characterization of intra-tumoral T cell responses may enable selection of patients for immunotherapy, an approach that requires prospective validation in clinical trials.


Assuntos
Neoplasias Encefálicas , Linfócitos T , Humanos , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética , Criança , Linfócitos T/imunologia , Antígenos de Neoplasias/imunologia , Imunoterapia/métodos , Pré-Escolar , Masculino , Feminino , Adolescente , Linfócitos do Interstício Tumoral/imunologia , Análise de Célula Única/métodos , Transcriptoma , Células Clonais
3.
Pediatr Blood Cancer ; 71(2): e30794, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38059641

RESUMO

While the survival of children with cancer has improved over time, infection remains a major morbidity and mortality risk. We conducted a systematic literature review to determine the unmet needs in diagnosing infection in immunocompromised children with cancer. The comprehensive search strategy followed the guidelines established by the Cochrane Handbook for Systematic Reviews of Interventions and the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) 2020 statement, and spanned multiple bibliographic databases and other public sources from January 1, 2012 to June 23, 2022. From 5188 records, 34 unique pediatric-focused studies met inclusion criteria. This review highlights the lack of published data on infectious disease testing in pediatric oncology patients, and the need for well-designed clinical impact and cost-effectiveness studies of both existing and novel diagnostic platforms. Such studies are necessary to optimize diagnostic and antimicrobial stewardship, leading to improvement in patient outcomes.


Assuntos
Oncologia , Neoplasias , Humanos , Criança , Neoplasias/complicações
4.
Immunity ; 56(12): 2677-2678, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38091948

RESUMO

Neurodegeneration is a devastating complication of Langerhans cell histiocytosis (LCH), but it is not clear how it develops. In this issue of Immunity, Wilk et al. demonstrate that circulating BRAFV600E+ myeloid cells damage the blood-brain barrier and infiltrate the brain. Dual inhibition of the MAPK and senescence pathways can block parenchymal injury, providing a potential therapeutic avenue for histiocytic neurodegeneration.


Assuntos
Histiocitose de Células de Langerhans , Monócitos , Humanos , Monócitos/metabolismo , Histiocitose de Células de Langerhans/metabolismo , Encéfalo/metabolismo , Barreira Hematoencefálica/metabolismo , Células Mieloides/metabolismo , Proteínas Proto-Oncogênicas B-raf/metabolismo
5.
Nat Genet ; 55(12): 2189-2199, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37945900

RESUMO

Circular extrachromosomal DNA (ecDNA) in patient tumors is an important driver of oncogenic gene expression, evolution of drug resistance and poor patient outcomes. Applying computational methods for the detection and reconstruction of ecDNA across a retrospective cohort of 481 medulloblastoma tumors from 465 patients, we identify circular ecDNA in 82 patients (18%). Patients with ecDNA-positive medulloblastoma were more than twice as likely to relapse and three times as likely to die within 5 years of diagnosis. A subset of tumors harbored multiple ecDNA lineages, each containing distinct amplified oncogenes. Multimodal sequencing, imaging and CRISPR inhibition experiments in medulloblastoma models reveal intratumoral heterogeneity of ecDNA copy number per cell and frequent putative 'enhancer rewiring' events on ecDNA. This study reveals the frequency and diversity of ecDNA in medulloblastoma, stratified into molecular subgroups, and suggests copy number heterogeneity and enhancer rewiring as oncogenic features of ecDNA.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Neoplasias , Humanos , DNA Circular , Meduloblastoma/genética , Estudos Retrospectivos , Neoplasias/genética , Oncogenes , Neoplasias Cerebelares/genética
6.
Nat Commun ; 14(1): 2300, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37085539

RESUMO

Ependymoma is a tumor of the brain or spinal cord. The two most common and aggressive molecular groups of ependymoma are the supratentorial ZFTA-fusion associated and the posterior fossa ependymoma group A. In both groups, tumors occur mainly in young children and frequently recur after treatment. Although molecular mechanisms underlying these diseases have recently been uncovered, they remain difficult to target and innovative therapeutic approaches are urgently needed. Here, we use genome-wide chromosome conformation capture (Hi-C), complemented with CTCF and H3K27ac ChIP-seq, as well as gene expression and DNA methylation analysis in primary and relapsed ependymoma tumors, to identify chromosomal conformations and regulatory mechanisms associated with aberrant gene expression. In particular, we observe the formation of new topologically associating domains ('neo-TADs') caused by structural variants, group-specific 3D chromatin loops, and the replacement of CTCF insulators by DNA hyper-methylation. Through inhibition experiments, we validate that genes implicated by these 3D genome conformations are essential for the survival of patient-derived ependymoma models in a group-specific manner. Thus, this study extends our ability to reveal tumor-dependency genes by 3D genome conformations even in tumors that lack targetable genetic alterations.


Assuntos
Ependimoma , Recidiva Local de Neoplasia , Criança , Humanos , Pré-Escolar , Recidiva Local de Neoplasia/genética , Cromossomos , Mapeamento Cromossômico , Ependimoma/genética , Ependimoma/patologia , Genoma , Cromatina/genética
7.
Pediatr Nephrol ; 38(7): 2221-2231, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36315275

RESUMO

BACKGROUND: Recognizing the optimal time to discontinue continuous kidney replacement therapy (CKRT) is necessary to advance patient recovery and mitigate complications. The aim of this study was to identify predictors of successful CKRT cessation in pediatric patients. METHODS: All patients requiring CKRT between January 2010 and March 2021 were evaluated. Patients on peritoneal or hemodialysis, who transferred between institutions, or who did not trial off CKRT were excluded. Successful discontinuation was defined as remaining off CKRT for at least 7 days. Demographics, admission diagnoses, PRISM III scores, and reasons for CKRT initiation were obtained. Clinical and biochemical variables were evaluated at CKRT initiation and discontinuation and in the 12-h period following discontinuation. Comparisons were conducted using Wilcoxon rank sum and Fisher's exact tests for continuous and categorical variables, respectively. A logistic regression model was fitted to identify significant factors. RESULTS: Ninety-nine patients underwent a trial off CKRT. Admission and initiation characteristics of the success and failure groups were similar. Patients who required re-initiation (n = 26) had longer ICU lengths of stay (27.2 vs. 44.5 days, p = 0.046) and higher in-hospital mortality (15.1% vs. 46.2%, p = 0.002). Urine output greater than 0.5 mL/kg/h irrespective of diuretic administration in the 6-h period before CKRT discontinuation was a significant predictor (AUC 0.72, 95% CI 0.60-0.84, p = 0.0009). CONCLUSIONS: Determining the predictors of sustained CKRT discontinuation is critical. Urine output greater than 0.5 mL/kg/h in this pediatric cohort predicted successful discontinuation. Future studies are needed to validate this threshold in disease- and age-specific cohorts and evaluate additional biomarkers of kidney injury. A higher resolution version of the Graphical abstract is available as Supplementary information.


Assuntos
Injúria Renal Aguda , Terapia de Substituição Renal Contínua , Humanos , Criança , Biomarcadores , Mortalidade Hospitalar , Rim , Injúria Renal Aguda/diagnóstico , Terapia de Substituição Renal/efeitos adversos , Estudos Retrospectivos
8.
Pediatr Crit Care Med ; 23(4): 277-285, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35180199

RESUMO

OBJECTIVES: To determine the frequency and characteristics of complications of peripherally administered hypertonic saline (HTS) through assessment of infiltration and extravasation. DESIGN: Retrospective cross-sectional study. SETTING: Freestanding tertiary care pediatric hospital. PATIENTS: Children who received HTS through a peripheral IV catheter (PIVC). INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: We conducted a single-center retrospective review from January 2012 to 2019. A total of 526 patients with 1,020 unique administrations of HTS through a PIVC met inclusion criteria. The primary endpoint was PIVC failure due to infiltration or extravasation. The indication for the administration of HTS infusion was collected. Catheter data was captured, including the setting of catheter placement, anatomical location on the patient, gauge size, length of time from catheter insertion to HTS infusion, in situ duration of catheter lifespan, and removal rationale. The administration data for HTS was reviewed and included volume of administration, bolus versus continuous infusion, infusion rate, infusion duration, and vesicant medications administered through the PIVC. There were 843 bolus infusions of HTS and 172 continuous infusions. Of the bolus administrations, there were eight infiltrations (0.9%). The continuous infusion group had 13 infiltrations (7.6%). There were no extravasations in either group, and no patients required medical therapy or intervention by the wound care or plastic surgery teams. There was no significant morbidity attributed to HTS administration in either group. CONCLUSIONS: HTS administered through a PIVC infrequently infiltrates in critically ill pediatric patients. The infiltration rate was low when HTS is administered as a bolus but higher when given as a continuous infusion. However, no patient suffered an extravasation injury or long-term morbidity from any infiltration.


Assuntos
Estado Terminal , Unidades de Terapia Intensiva Pediátrica , Criança , Estado Terminal/terapia , Estudos Transversais , Humanos , Estudos Retrospectivos , Solução Salina Hipertônica
9.
Clin Infect Dis ; 74(3): 479-489, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33988226

RESUMO

BACKGROUND: Increased inflammation has been well defined in coronavirus disease 2019 (COVID-19), while definitive pathways driving severe forms of this disease remain uncertain. Neutrophils are known to contribute to immunopathology in infections, inflammatory diseases, and acute respiratory distress syndrome, a primary cause of morbidity and mortality in COVID-19. Changes in neutrophil function in COVID-19 may give insight into disease pathogenesis and identify therapeutic targets. METHODS: Blood was obtained serially from critically ill COVID-19 patients for 11 days. Neutrophil extracellular trap formation (NETosis), oxidative burst, phagocytosis, and cytokine levels were assessed. Lung tissue was obtained immediately postmortem for immunostaining. PubMed searches for neutrophils, lung, and COVID-19 yielded 10 peer-reviewed research articles in English. RESULTS: Elevations in neutrophil-associated cytokines interleukin 8 (IL-8) and interleukin 6, and general inflammatory cytokines IFN-inducible protien-19, granulocyte macrophage colony-stimulating factor (GM-CSF), interleukin 1ß, interleukin 10, and tumor necrosis factor, were identified both at first measurement and across hospitalization (P < .0001). COVID-19 neutrophils had exaggerated oxidative burst (P < .0001), NETosis (P < .0001), and phagocytosis (P < .0001) relative to controls. Increased NETosis correlated with leukocytosis and neutrophilia, and neutrophils and NETs were identified within airways and alveoli in lung parenchyma of 40% of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected lungs available for examination (2 of 5). While elevations in IL-8 and absolute neutrophil count correlated with disease severity, plasma IL-8 levels alone correlated with death. CONCLUSIONS: Literature to date demonstrates compelling evidence of increased neutrophils in the circulation and lungs of COVID-19 patients. Importantly, neutrophil quantity and activation correlates with severity of disease. Similarly, our data show that circulating neutrophils in COVID-19 exhibit an activated phenotype with enhanced NETosis and oxidative burst.


Assuntos
COVID-19 , Armadilhas Extracelulares , Estado Terminal , Humanos , Ativação de Neutrófilo , Neutrófilos , Fenótipo , SARS-CoV-2
10.
Open Forum Infect Dis ; 8(7): ofab346, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34322569

RESUMO

BACKGROUND: Osteoarticular infections (OAIs) are frequently encountered in children. Treatment may be guided by isolation of a pathogen; however, operative cultures are often negative. Metagenomic next-generation sequencing (mNGS) allows for broad and sensitive pathogen detection that is culture-independent. We sought to evaluate the diagnostic utility of mNGS in comparison to culture and usual care testing to detect pathogens in acute osteomyelitis and/or septic arthritis in children. METHODS: This was a single-site study to evaluate the use of mNGS in comparison to culture to detect pathogens in acute pediatric osteomyelitis and/or septic arthritis. Subjects admitted to a tertiary children's hospital with suspected OAI were eligible for enrollment. We excluded subjects with bone or joint surgery within 30 days of admission or with chronic osteomyelitis. Operative samples were obtained at the surgeon's discretion per standard care (fluid or tissue) and based on imaging and operative findings. We compared mNGS to culture and usual care testing (culture and polymerase chain reaction [PCR]) from the same site. RESULTS: We recruited 42 subjects over the enrollment period. mNGS of the operative samples identified a pathogen in 26 subjects compared to 19 subjects in whom culture identified a pathogen. In 4 subjects, mNGS identified a pathogen where combined usual care testing (culture and PCR) was negative. Positive predictive agreement and negative predictive agreement both were 93.0% for mNGS. CONCLUSIONS: In this single-site prospective study of pediatric OAI, we demonstrated the diagnostic utility of mNGS testing in comparison to culture and usual care (culture and PCR) from operative specimens.

11.
Science ; 366(6469): 1134-1139, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31727856

RESUMO

Noncoding genetic variation is a major driver of phenotypic diversity, but functional interpretation is challenging. To better understand common genetic variation associated with brain diseases, we defined noncoding regulatory regions for major cell types of the human brain. Whereas psychiatric disorders were primarily associated with variants in transcriptional enhancers and promoters in neurons, sporadic Alzheimer's disease (AD) variants were largely confined to microglia enhancers. Interactome maps connecting disease-risk variants in cell-type-specific enhancers to promoters revealed an extended microglia gene network in AD. Deletion of a microglia-specific enhancer harboring AD-risk variants ablated BIN1 expression in microglia, but not in neurons or astrocytes. These findings revise and expand the list of genes likely to be influenced by noncoding variants in AD and suggest the probable cell types in which they function.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Doença de Alzheimer/genética , Encéfalo/metabolismo , Elementos Facilitadores Genéticos/genética , Variação Genética , Microglia/metabolismo , Proteínas Nucleares/genética , Regiões Promotoras Genéticas/genética , Proteínas Supressoras de Tumor/genética , Células Cultivadas , Cromatina/metabolismo , Redes Reguladoras de Genes , Estudo de Associação Genômica Ampla , Humanos , Deleção de Sequência
12.
Neuron ; 103(6): 1016-1033.e10, 2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31375314

RESUMO

iPSC-derived microglia offer a powerful tool to study microglial homeostasis and disease-associated inflammatory responses. Yet, microglia are highly sensitive to their environment, exhibiting transcriptomic deficiencies when kept in isolation from the brain. Furthermore, species-specific genetic variations demonstrate that rodent microglia fail to fully recapitulate the human condition. To address this, we developed an approach to study human microglia within a surrogate brain environment. Transplantation of iPSC-derived hematopoietic-progenitors into the postnatal brain of humanized, immune-deficient mice results in context-dependent differentiation into microglia and other CNS macrophages, acquisition of an ex vivo human microglial gene signature, and responsiveness to both acute and chronic insults. Most notably, transplanted microglia exhibit robust transcriptional responses to Aß-plaques that only partially overlap with that of murine microglia, revealing new, human-specific Aß-responsive genes. We therefore have demonstrated that this chimeric model provides a powerful new system to examine the in vivo function of patient-derived and genetically modified microglia.


Assuntos
Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Diferenciação Celular , Expressão Gênica , Microglia/metabolismo , Placa Amiloide/genética , Quimeras de Transplante , Animais , Encéfalo/citologia , Modelos Animais de Doenças , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Transplante de Células-Tronco Hematopoéticas , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Fator Estimulador de Colônias de Macrófagos/genética , Camundongos , Camundongos Transgênicos , Microglia/citologia , Trombopoetina/genética
13.
Pediatr Crit Care Med ; 20(11): 1007-1020, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31246743

RESUMO

OBJECTIVES: Genetic disorders are a leading contributor to mortality in the neonatal ICU and PICU in the United States. Although individually rare, there are over 6,200 single-gene diseases, which may preclude a genetic diagnosis prior to ICU admission. Rapid whole genome sequencing is an emerging method of diagnosing genetic conditions in time to affect ICU management of neonates; however, its clinical utility has yet to be adequately demonstrated in critically ill children. This study evaluates next-generation sequencing in pediatric critical care. DESIGN: Retrospective cohort study. SETTING: Single-center PICU in a tertiary children's hospital. PATIENTS: Children 4 months to 18 years admitted to the PICU who were nominated between July 2016 and May 2018. INTERVENTIONS: Rapid whole genome sequencing with targeted phenotype-driven analysis was performed on patients and their parents, when parental samples were available. MEASUREMENTS AND MAIN RESULTS: A molecular diagnosis was made by rapid whole genome sequencing in 17 of 38 children (45%). In four of the 17 patients (24%), the genetic diagnoses led to a change in management while in the PICU, including genome-informed changes in pharmacotherapy and transition to palliative care. Nine of the 17 diagnosed children (53%) had no dysmorphic features or developmental delay. Eighty-two percent of diagnoses affected the clinical management of the patient and/or family after PICU discharge, including avoidance of biopsy, administration of factor replacement, and surveillance for disorder-related sequelae. CONCLUSIONS: This study demonstrates a retrospective evaluation for undiagnosed genetic disease in the PICU and clinical utility of rapid whole genome sequencing in a portion of critically ill children. Further studies are needed to identify PICU patients who will benefit from rapid whole genome sequencing early in PICU admission when the underlying etiology is unclear.


Assuntos
Doenças Genéticas Inatas/diagnóstico , Sequenciamento Completo do Genoma , Adolescente , Criança , Pré-Escolar , Estado Terminal/terapia , Feminino , Humanos , Lactente , Unidades de Terapia Intensiva Pediátrica/estatística & dados numéricos , Masculino , Medicina de Precisão/métodos , Estudos Retrospectivos
15.
Science ; 356(6344)2017 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-28546318

RESUMO

Microglia play essential roles in central nervous system (CNS) homeostasis and influence diverse aspects of neuronal function. However, the transcriptional mechanisms that specify human microglia phenotypes are largely unknown. We examined the transcriptomes and epigenetic landscapes of human microglia isolated from surgically resected brain tissue ex vivo and after transition to an in vitro environment. Transfer to a tissue culture environment resulted in rapid and extensive down-regulation of microglia-specific genes that were induced in primitive mouse macrophages after migration into the fetal brain. Substantial subsets of these genes exhibited altered expression in neurodegenerative and behavioral diseases and were associated with noncoding risk variants. These findings reveal an environment-dependent transcriptional network specifying microglia-specific programs of gene expression and facilitate efforts to understand the roles of microglia in human brain diseases.


Assuntos
Meio Ambiente , Redes Reguladoras de Genes/fisiologia , Microglia/citologia , Microglia/fisiologia , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/fisiopatologia , Células Cultivadas , Epilepsia/genética , Epilepsia/fisiopatologia , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
16.
J Nat Prod ; 77(1): 15-21, 2014 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-24328269

RESUMO

The microbial production, isolation, and structure elucidation of four new napyradiomycin congeners (1-4) is reported. The structures of these compounds, which are new additions to the marine-derived meroterpenoids, were defined by comprehensive spectroscopic analysis and by X-ray crystallography. Using fluorescence-activated cell sorting (FACS) analysis, napyradiomycins 1-4 were observed to induce apoptosis in the colon adenocarcinoma cell line HCT-116, indicating the possibility of a specific biochemical target for this class of cytotoxins.


Assuntos
Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Naftoquinonas/isolamento & purificação , Naftoquinonas/farmacologia , Antineoplásicos/química , Cristalografia por Raios X , Ensaios de Seleção de Medicamentos Antitumorais , Células HCT116 , Humanos , Biologia Marinha , Conformação Molecular , Estrutura Molecular , Naftoquinonas/química , Ressonância Magnética Nuclear Biomolecular , Estereoisomerismo
17.
Proc Natl Acad Sci U S A ; 108(51): 20382-7, 2011 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-22159035

RESUMO

Long interspersed element-1 (L1) retrotransposons compose ∼20% of the mammalian genome, and ongoing L1 retrotransposition events can impact genetic diversity by various mechanisms. Previous studies have demonstrated that endogenous L1 retrotransposition can occur in the germ line and during early embryonic development. In addition, recent data indicate that engineered human L1s can undergo somatic retrotransposition in human neural progenitor cells and that an increase in human-specific L1 DNA content can be detected in the brains of normal controls, as well as in Rett syndrome patients. Here, we demonstrate an increase in the retrotransposition efficiency of engineered human L1s in cells that lack or contain severely reduced levels of ataxia telangiectasia mutated, a serine/threonine kinase involved in DNA damage signaling and neurodegenerative disease. We demonstrate that the increase in L1 retrotransposition in ataxia telangiectasia mutated-deficient cells most likely occurs by conventional target-site primed reverse transcription and generate either longer, or perhaps more, L1 retrotransposition events per cell. Finally, we provide evidence suggesting an increase in human-specific L1 DNA copy number in postmortem brain tissue derived from ataxia telangiectasia patients compared with healthy controls. Together, these data suggest that cellular proteins involved in the DNA damage response may modulate L1 retrotransposition.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas de Ligação a DNA/genética , Elementos Nucleotídeos Longos e Dispersos/genética , Células-Tronco Neurais/citologia , Proteínas Serina-Treonina Quinases/genética , Retroelementos/genética , Proteínas Supressoras de Tumor/genética , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Linhagem Celular , Reparo do DNA , Endonucleases/metabolismo , Fibroblastos/citologia , Proteínas de Fluorescência Verde/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Transdução de Sinais
18.
Hum Mol Genet ; 16(13): 1569-77, 2007 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-17468180

RESUMO

LINE-1 elements comprise approximately 17% of human DNA and their mobility continues to impact genome evolution. However, little is known about the types of non-transformed cells that can support LINE-1 retrotransposition. Here, we show that human embryonic stem cells express endogenous LINE-1 elements and can accommodate LINE-1 retrotransposition in vitro. The resultant retrotransposition events can occur into genes and can result in the concomitant deletion of genomic DNA at the target site. Thus, these data suggest that LINE-1 retrotransposition events may occur during early stages of human development.


Assuntos
Células-Tronco Embrionárias/metabolismo , Elementos Nucleotídeos Longos e Dispersos/genética , Retroelementos/genética , Diferenciação Celular , Linhagem Celular , Linhagem Celular Tumoral , DNA/metabolismo , Evolução Molecular , Genoma , Humanos , Microscopia de Contraste de Fase , Modelos Genéticos , Plasmídeos/metabolismo , Reação em Cadeia da Polimerase , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA