RESUMO
BACKGROUND: Glioblastoma multiforme (GBM) is an aggressive tumor, difficult to treat pharmacologically because of the blood-brain barrier (BBB), which is rich in ATP-binding cassette (ABC) transporters and tight junction (TJ) proteins. The BBB is disrupted within GBM bulk, but it is competent in brain-adjacent-to-tumor areas, where eventual GBM foci can trigger tumor relapse. How GBM cells influence the permeability of BBB is poorly investigated. METHODS: To clarify this point, we co-cultured human BBB models with 3 patient-derived GBM cells, after separating from each tumor the stem cell/neurosphere (SC/NS) and the differentiated/adherent cell (AC) components. Also, we set up cultures of BBB cells with the conditioned medium of NS or AC, enriched or depleted of IL-6. Extracellular cytokines were measured by protein arrays and ELISA. The intracellular signaling in BBB cells was measured by immunoblotting, in the presence of STAT3 pharmacological inhibitor or specific PROTAC. The competence of BBB was evaluated by permeability assays and TEER measurement. RESULTS: The presence of GBM cells or their conditioned medium increased the permeability to doxorubicin, mitoxantrone and dextran-70, decreased TEER, down-regulated ABC transporters and TJ proteins at the transcriptional level. These effects were higher with AC or their medium than with NS. The secretome analysis identified IL-6 as significantly more produced by AC than by NS. Notably, AC-conditioned medium treated with an IL-6 neutralizing antibody reduced the BBB permeability to NS levels, while NS-conditioned medium enriched with IL-6 increased BBB permeability to AC levels. Mechanistically, IL-6 released by AC GBM cells activated STAT3 in BBB cells. In turn, STAT3 down-regulated ABC transporter and TJ expression, increased permeability and decreased TEER. The same effects were obtained in BBB cells treated with STA-21, a pharmacological inhibitor of STAT3, or with a PROTAC targeting STAT3. CONCLUSIONS: Our work demonstrates for the first time that the degree of GBM differentiation influences BBB permeability. The crosstalk between GBM cells that release IL-6 and BBB cells that respond by activating STAT3, controls the expression of ABC transporters and TJ proteins on BBB. These results may pave the way for novel therapeutic tools to tune BBB permeability and improve drug delivery to GBM.
Assuntos
Barreira Hematoencefálica , Neoplasias Encefálicas , Diferenciação Celular , Glioblastoma , Glioblastoma/metabolismo , Humanos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Diferenciação Celular/fisiologia , Diferenciação Celular/efeitos dos fármacos , Neoplasias Encefálicas/metabolismo , Técnicas de Cocultura , Linhagem Celular Tumoral , Fator de Transcrição STAT3/metabolismo , PermeabilidadeRESUMO
The blood-brain barrier (BBB) restricts paracellular and transcellular diffusion of compounds and is part of a dynamic multicellular structure known as the "neurovascular unit" (NVU), which strictly regulates the brain homeostasis and microenvironment. Several neuropathological conditions (e.g., Parkinson's disease and Alzheimer's disease), are associated with BBB impairment yet the exact underlying pathophysiological mechanisms remain unclear. In total, 90% of drugs that pass animal testing fail human clinical trials, in part due to inter-species discrepancies. Thus, in vitro human-based models of the NVU are essential to better understand BBB mechanisms; connecting its dysfunction to neuropathological conditions for more effective and improved therapeutic treatments. Herein, we developed a biomimetic tri-culture NVU in vitro model consisting of 3 human-derived cell lines: human cerebral micro-vascular endothelial cells (hCMEC/D3), human 1321N1 (astrocyte) cells, and human SH-SY5Y neuroblastoma cells. The cells were grown in Transwell hanging inserts in a variety of configurations and the optimal setup was found to be the comprehensive tri-culture model, where endothelial cells express typical markers of the BBB and contribute to enhancing neural cell viability and neurite outgrowth. The tri-culture configuration was found to exhibit the highest transendothelial electrical resistance (TEER), suggesting that the cross-talk between astrocytes and neurons provides an important contribution to barrier integrity. Lastly, the model was validated upon exposure to several soluble factors [e.g., Lipopolysaccharides (LPS), sodium butyrate (NaB), and retinoic acid (RA)] known to affect BBB permeability and integrity. This in vitro biological model can be considered as a highly biomimetic recapitulation of the human NVU aiming to unravel brain pathophysiology mechanisms as well as improve testing and delivery of therapeutics.
RESUMO
Glioblastomas (GBMs) are the most common primary brain tumors characterized by strong invasiveness and angiogenesis. GBM cells and microenvironment secrete angiogenic factors and also express chemoattractant G protein-coupled receptors (GPCRs) to their advantage. We investigated the role of the vasoactive peptide urotensin II (UII) and its receptor UT on GBM angiogenesis and tested potential ligand/therapeutic options based on this system. On glioma patient samples, the expression of UII and UT increased with the grade with marked expression in the vascular and peri-necrotic mesenchymal hypoxic areas being correlated with vascular density. In vitro human UII stimulated human endothelial HUV-EC-C and hCMEC/D3 cell motility and tubulogenesis. In mouse-transplanted Matrigel sponges, mouse (mUII) and human UII markedly stimulated invasion by macrophages, endothelial, and smooth muscle cells. In U87 GBM xenografts expressing UII and UT in the glial and vascular compartments, UII accelerated tumor development, favored hypoxia and necrosis associated with increased proliferation (Ki67), and induced metalloproteinase (MMP)-2 and -9 expression in Nude mice. UII also promoted a "tortuous" vascular collagen-IV expressing network and integrin expression mainly in the vascular compartment. GBM angiogenesis and integrin αvß3 were confirmed by in vivo 99mTc-RGD tracer imaging and tumoral capture in the non-necrotic area of U87 xenografts in Nude mice. Peptide analogs of UII and UT antagonist were also tested as potential tumor repressor. Urotensin II-related peptide URP inhibited angiogenesis in vitro and failed to attract vascular and inflammatory components in Matrigel in vivo. Interestingly, the UT antagonist/biased ligand urantide and the non-peptide UT antagonist palosuran prevented UII-induced tubulogenesis in vitro and significantly delayed tumor growth in vivo. Urantide drastically prevented endogenous and UII-induced GBM angiogenesis, MMP, and integrin activations, associated with GBM tumoral growth. These findings show that UII induces GBM aggressiveness with necrosis and angiogenesis through integrin activation, a mesenchymal behavior that can be targeted by UT biased ligands/antagonists.
RESUMO
Cerebral cavernous malformations (CCMs) are vascular malformations that can be the result of the deficiency of one of the CCM genes. Their only present treatment is surgical removal, which is not always possible, and an alternative pharmacological strategy to eliminate them is actively sought. We have studied the effect of the lack of one of the CCM genes, CCM3, in endothelial and non-endothelial cells. By comparing protein expression in control and CCM3-silenced cells, we found that the levels of the Epidermal Growth Factor Receptor (EGFR) are higher in CCM3-deficient cells, which adds to the known upregulation of Vascular Endothelial Growth Factor Receptor 2 (VEGFR2) in these cells. Whereas VEGFR2 is upregulated at the mRNA level, EGFR has a prolonged half-life. Inhibition of EGFR family members in CCM3-deficient cells does not revert the known cellular effects of lack of CCM genes, but it induces significantly more apoptosis in CCM3-deficient cells than in control cells. We propose that the susceptibility to tyrosine kinase inhibitors of CCM3-deficient cells can be harnessed to kill the abnormal cells of these lesions and thus treat CCMs pharmacologically.
RESUMO
The purpose of this study was to clarify the roles of ERM proteins (ezrin/radixin/moesin) in the regulation of membrane localization and transport activity of transporters at the human blood-brain barrier (BBB). Ezrin or moesin knockdown in a human in vitro BBB model cell line (hCMEC/D3) reduced both BCRP and GLUT1 protein expression levels on the plasma membrane. Radixin knockdown reduced not only BCRP and GLUT1, but also P-gp membrane expression. These results indicate that P-gp, BCRP and GLUT1 proteins are maintained on the plasma membrane via different ERM proteins. Furthermore, moesin knockdown caused the largest decrease of P-gp and BCRP efflux activity among the ERM proteins, whereas GLUT1 influx activity was similarly reduced by knockdown of each ERM protein. To investigate how moesin knockdown reduced P-gp efflux activity without loss of P-gp from the plasma membrane, we examined the role of PKCßI. PKCßI increased P-gp phosphorylation and reduced P-gp efflux activity. Radixin and moesin proteins were detected in isolated human brain capillaries, and their protein abundances were within a 3-fold range, compared with those in hCMEC/D3 cell line. These findings may mean that ezrin, radixin and moesin maintain the functions of different transporters in different ways at the human BBB.
Assuntos
Barreira Hematoencefálica/metabolismo , Membrana Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Células Endoteliais/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas dos Microfilamentos/metabolismo , Idoso , Linhagem Celular , Proteínas do Citoesqueleto/genética , Técnicas de Silenciamento de Genes , Humanos , Masculino , Proteínas de Membrana/genética , Proteínas dos Microfilamentos/genética , Microvasos/metabolismo , RNA Interferente Pequeno/genética , TransfecçãoRESUMO
Exposure of the brain to high levels of glucocorticoids during ischemia-reperfusion induces neuronal cell death. Oxidative stress alters blood-brain barrier (BBB) function during ischemia-reperfusion, and so we hypothesized that it might impair P-glycoprotein (P-gp)-mediated efflux transport of glucocorticoids at the BBB. Therefore, the purpose of this study was to clarify the molecular mechanism of this putative decrease of P-gp-mediated efflux function. First, we established that H2O2 treatment of a human in vitro BBB model (hCMEC/D3) reduced both P-gp efflux transport activity and protein expression on the plasma membrane within 20 min. These results suggested that the rapid decrease of efflux function might be due to internalization of P-gp. Furthermore, H2O2 treatment markedly increased tyrosine-14-phosphorylated caveolin-1, which is involved in P-gp internalization. A brain perfusion study in rats showed that cortisol efflux at the BBB was markedly decreased by H2O2 administration, and inhibitors of Abl kinase and Src kinase, which phosphorylate tyrosine-14 in caveolin-1, suppressed this decrease. Overall, these findings support the idea that oxidative stress-induced activation of Abl kinase and Src kinase induces internalization of P-gp via the phosphorylation of tyrosine-14 in caveolin-1, leading to a rapid decrease of P-gp-mediated cortisol efflux at the BBB.
Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Barreira Hematoencefálica/metabolismo , Proteína Tirosina Quinase CSK/metabolismo , Caveolina 1/metabolismo , Hidrocortisona/metabolismo , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-abl/metabolismo , Animais , Barreira Hematoencefálica/patologia , Humanos , Peróxido de Hidrogênio/farmacologia , Masculino , Fosforilação/efeitos dos fármacos , Ratos , Ratos Sprague-DawleyRESUMO
Microparticles (MP) are regarded both as biomarkers and mediators of many forms of pathology, including neurovascular inflammation. Here, we characterized vectorial release of apical and basolateral MPs (AMPs and BMPs) from control and TNF-α/IFN-γ treated human brain endothelial monolayers, studied molecular composition of AMPs and BMPs and characterized molecular pathways regulating AMP and BMP release. The effects of AMPs and BMPs on blood-brain barrier properties and human brain microvascular smooth muscle tonic contractility in vitro were also evaluated. We report that human brain microvascular endothelial cells release MPs both apically and basolaterally with both AMP and BMP release significantly increased following inflammatory cytokine challenge (3.5-fold and 3.9-fold vs. control, respectively). AMPs and BMPs both carry proteins derived from parent cells including those in BBB junctions (Claudin-1, -3, -5, occludin, VE-cadherin). AMPs and BMPs represent distinct populations whose release appears to be regulated by distinctly separate molecular pathways, which depend on signaling from Rho-associated, coiled-coil containing protein kinase (ROCK), calpain as well as cholesterol depletion. AMPs and BMPs modulate functions of neighboring cells including BBB endothelial solute permeability and brain vascular smooth muscle contractility. While control AMPs enhanced brain endothelial barrier, cytokine-induced AMPs impaired BBB. Cytokine-induced but not control BMPs significantly impaired human brain smooth muscle contractility as early as day 1. Taken together these results indicate that AMPs and BMPs may contribute to neurovascular inflammatory disease progression both within the circulation (AMP) and in the brain parenchyma (BMP).
Assuntos
Encéfalo/metabolismo , Micropartículas Derivadas de Células/metabolismo , Células Endoteliais/metabolismo , Mediadores da Inflamação/farmacologia , Interferon gama/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Antígenos CD/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Encéfalo/irrigação sanguínea , Encéfalo/citologia , Caderinas/metabolismo , Células Cultivadas , Claudinas/metabolismo , Humanos , Inflamação/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiologia , Ocludina/metabolismo , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismoRESUMO
Transmembrane (TM) proteins localized at the plasma membrane, such as transporters and receptors, play important roles in regulating the selective permeability of the blood-brain barrier (BBB). The purpose of the present study was to clarify the differences in the expression levels of TM proteins in the plasma membrane between two established human BBB model cell lines, hCMEC/D3 and HBMEC/ciß, in order to assist researchers in selecting the most appropriate cell line for particular purposes. We first confirmed that plasma membranes could be enriched sufficiently for a quantitative proteomics study by using the Plasma Membrane Protein Extraction Kit provided by BioVision with a modified protocol. This method was applied to hCMEC/D3 and HBMEC/ciß cells, and fractions were used for untargeted quantitative proteomics based on sequential window acquisition of all theoretical fragment-ion spectra. In the plasma membrane fractions, 345 TM proteins were quantified, among which 135 showed significant expression differences between the two cell lines. In hCMEC/D3 cells, amino acid transporters SNAT1, SNAT2, SNAT5, ASCT1, CAT1, and LAT1; adenosine 5'-triphosphate-binding cassette transporters P-gp and MRP4; and GLUT1 were more highly expressed. The transferrin receptor expression was also 4.56-fold greater in hCMEC/D3 cells. In contrast, HBMEC/ciß cells expressed greater levels of IgG transporter neonatal Fc receptor, as well as tight-junction proteins PECAM1, JAM1, JAM3, and ESAM. Our results suggest that hCMEC/D3 cells have greater efflux transport, amino acid transport, and transferrin receptor-mediated uptake activities, whereas HBMEC/ciß cells have greater IgG-transport activity and tight-junction integrity.
Assuntos
Barreira Hematoencefálica/metabolismo , Encéfalo/irrigação sanguínea , Membrana Celular/metabolismo , Células Endoteliais/metabolismo , Endotélio Vascular/citologia , Proteínas de Membrana Transportadoras/metabolismo , Modelos Biológicos , Permeabilidade da Membrana Celular , Células HEK293 , Humanos , Proteômica/métodos , Receptores da Transferrina/metabolismo , Proteínas de Junções Íntimas/metabolismo , Junções Íntimas/metabolismoRESUMO
The effect of cannabidiol (CBD), a high-affinity agonist of the transient receptor potential vanilloid-2 (TRPV2) channel, has been poorly investigated in human brain microvessel endothelial cells (BMEC) forming the blood-brain barrier (BBB). TRPV2 expression and its role on Ca2+ cellular dynamics, trans-endothelial electrical resistance (TEER), cell viability and growth, migration, and tubulogenesis were evaluated in human primary cultures of BMEC (hPBMEC) or in the human cerebral microvessel endothelial hCMEC/D3 cell line. Abundant TRPV2 expression was measured in hCMEC/D3 and hPBMEC by qRT-PCR, Western blotting, nontargeted proteomics, and cellular immunofluorescence studies. Intracellular Ca2+ levels were increased by heat and CBD and blocked by the nonspecific TRP antagonist ruthenium red (RR) and the selective TRPV2 inhibitor tranilast (TNL) or by silencing cells with TRPV2 siRNA. CBD dose-dependently induced the hCMEC/D3 cell number (EC50 0.3 ± 0.1 µM), and this effect was fully abolished by TNL or TRPV2 siRNA. A wound healing assay showed that CBD induced cell migration, which was also inhibited by TNL or TRPV2 siRNA. Tubulogenesis of hCMEC/D3 cells in 3D matrigel cultures was significantly increased by 41 and 73% after a 7 or 24 h CBD treatment, respectively, and abolished by TNL. CBD also increased the TEER of hPBMEC monolayers cultured in transwell, and this was blocked by TNL. Our results show that CBD, at extracellular concentrations close to those observed in plasma of patients treated by CBD, induces proliferation, migration, tubulogenesis, and TEER increase in human brain endothelial cells, suggesting CBD might be a potent target for modulating the human BBB.
Assuntos
Neoplasias Encefálicas/irrigação sanguínea , Canabidiol/farmacologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Endoteliais/metabolismo , Microvasos/patologia , Canais de Cátion TRPV/metabolismo , Barreira Hematoencefálica/metabolismo , Cálcio/metabolismo , Cannabis/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Impedância Elétrica , Temperatura Alta , Humanos , Extratos Vegetais/farmacologia , Rutênio Vermelho/farmacologia , Canais de Cátion TRPV/antagonistas & inibidores , ortoaminobenzoatos/farmacologiaRESUMO
Tumour necrosis factor (TNF) signalling is mediated via two receptors, TNF-receptor 1 (TNFR1) and TNF-receptor 2 (TNFR2), which work antithetically to balance CNS immune responses involved in autoimmune diseases such as multiple sclerosis. To determine the therapeutic potential of selectively inhibiting TNFR1 in mice with experimental autoimmune encephalomyelitis, we used chimeric human/mouse TNFR1 knock-in mice allowing the evaluation of antagonistic anti-human TNFR1 antibody efficacy. Treatment of mice after onset of disease with ATROSAB resulted in a robust amelioration of disease severity, correlating with reduced central nervous system immune cell infiltration. Long-term efficacy of treatment was achieved by treatment with the parental mouse anti-human TNFR1 antibody, H398, and extended by subsequent re-treatment of mice following relapse. Our data support the hypothesis that anti-TNFR1 therapy restricts immune cell infiltration across the blood-brain barrier through the down-regulation of TNF-induced adhesion molecules, rather than altering immune cell composition or activity. Collectively, we demonstrate the potential for anti-human TNFR1 therapies to effectively modulate immune responses in autoimmune disease.
Assuntos
Anticorpos Monoclonais Murinos/farmacologia , Encefalomielite Autoimune Experimental/tratamento farmacológico , Esclerose Múltipla/tratamento farmacológico , Receptores Tipo I de Fatores de Necrose Tumoral/antagonistas & inibidores , Animais , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Feminino , Humanos , Camundongos , Camundongos Transgênicos , Esclerose Múltipla/genética , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismoRESUMO
Although insulin receptor is expressed at the human blood-brain barrier (BBB), the physiological and pathologic roles of insulin signaling in biologic responses at the BBB remain unclear. Here, we investigate insulin signaling at the human BBB using human cerebral microvascular endothelial cell line (hCMEC/D3) as a well-established in vitro model. Western blot analysis showed that insulin induced phosphorylation of extracellular signal-regulated kinase and insulin receptor substrate-1 in hCMEC/D3 cells. Short-term insulin stimulation increased cell proliferation via the canonical phosphoinositide-3 kinase/protein kinase B and mitogen-activated protein kinase signaling pathways, suggesting that insulin signaling is involved in the regulation of biologic responses in the human BBB. We also found that insulin rapidly increased tight-junction integrity of hCMEC/D3 cells via the phosphoinositide-3 kinase/protein kinase B/glycogen synthase kinase-3 ß signaling pathway. Inhibition of insulin/insulin-like growth factor-1 receptor kinase by AG1024 blocked the increase of tight-junction integrity. In addition, high-insulin/high-glucose treatment (as a model of hyperglycemia and hyperinsulinemia) synergistically reduced the tight-junction integrity in hCMEC/D3 cells, although either condition alone had little or no effect. Our findings suggest that, in addition to the established role of interactions of astrocytes and pericytes with brain capillary endothelial cells, insulin signaling from the blood side of the BBB contributes to maintenance of homeostasis by regulating cell proliferation and tight-junction integrity.
Assuntos
Barreira Hematoencefálica/metabolismo , Insulina/farmacologia , Junções Íntimas/metabolismo , Astrócitos , Transporte Biológico , Encéfalo/efeitos dos fármacos , Técnicas de Cultura de Células , Proliferação de Células/efeitos dos fármacos , Células Endoteliais , Quinase 3 da Glicogênio Sintase/metabolismo , Homeostase , Humanos , Hiperglicemia/tratamento farmacológico , Hiperinsulinismo/tratamento farmacológico , Pericitos , Fosfatases de Fosfoinositídeos/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor de Insulina/metabolismo , Transdução de Sinais , Tirfostinas/antagonistas & inibidores , Tirfostinas/metabolismo , Vasculite do Sistema Nervoso Central/metabolismoRESUMO
BACKGROUND AND OBJECTIVES: Lithium chloride (LiCl) has been shown to improve the tightness of brain endothelial cell monolayers in vitro by inhibition of the GSK-3ß enzyme, activation of the Wnt/beta-catenin pathway and regulation of tight junction (TJ) protein expression. However, the effect of LiCl on the drug transporters and drug-metabolizing enzymes has not been addressed so far. The hCMEC/D3 cell line is a validated in vitro BBB model expressing transporters and drug-metabolizing enzymes (phase 1 and 2). The present study was conducted to compare the mRNAs levels corresponding to several BBB endothelial markers in hCMEC/D3 cells with and without incubation in LiCl. METHODS: We used quantitative real-time polymerase chain reaction (qRT-PCR) to quantify the mRNA expression of 5 tight junction (TJ) proteins, 4 adhesion proteins, 5 solute carriers, 7 ATP-binding cassette (ABC) transporters, 8 cytochrome P450 (CYP) and 17 phase 2 conjugation enzymes in hCMEC/D3 cells with and without incubation in LiCl. RESULTS: Our study showed that LiCl treatment for 6 days at a concentration of 10 mM induced the TJ protein claudin-3, the ABC transporter BCRP/ABCG2, the cytochrome P-450 CYP1A1 and the glutathione-S-transferase GSTM3, while the other selected markers were not significantly affected. CONCLUSIONS: Our findings provide new insights into the effects of lithium on some drug transporters and drug-metabolizing enzymes in the BBB that may have consequences in pharmacotherapy.
Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Encéfalo/citologia , Claudina-3/genética , Citocromo P-450 CYP1A1/genética , Células Endoteliais/metabolismo , Glutationa Transferase/genética , Cloreto de Lítio/farmacologia , Proteínas de Neoplasias/genética , RNA Mensageiro/metabolismo , Biomarcadores/metabolismo , Linhagem Celular , Expressão Gênica/efeitos dos fármacos , Humanos , Cloreto de Lítio/administração & dosagem , RNA Mensageiro/genéticaRESUMO
KEY POINTS: Gap junction channels are essential for the formation and regulation of physiological units in tissues by allowing the lateral cell-to-cell diffusion of ions, metabolites and second messengers. Stimulation of the adenosine receptor subtype A2B increases the gap junction coupling in the human blood-brain barrier endothelial cell line hCMEC/D3. Although the increased gap junction coupling is cAMP-dependent, neither the protein kinase A nor the exchange protein directly activated by cAMP were involved in this increase. We found that cAMP activates cyclic nucleotide-gated (CNG) channels and thereby induces a Ca2+ influx, which leads to the increase in gap junction coupling. The report identifies CNG channels as a possible physiological link between adenosine receptors and the regulation of gap junction channels in endothelial cells of the blood-brain barrier. ABSTRACT: The human cerebral microvascular endothelial cell line hCMEC/D3 was used to characterize the physiological link between adenosine receptors and the gap junction coupling in endothelial cells of the blood-brain barrier. Expressed adenosine receptor subtypes and connexin (Cx) isoforms were identified by RT-PCR. Scrape loading/dye transfer was used to evaluate the impact of the A2A and A2B adenosine receptor subtype agonist 2-phenylaminoadenosine (2-PAA) on the gap junction coupling. We found that 2-PAA stimulated cAMP synthesis and enhanced gap junction coupling in a concentration-dependent manner. This enhancement was accompanied by an increase in gap junction plaques formed by Cx43. Inhibition of protein kinase A did not affect the 2-PAA-related enhancement of gap junction coupling. In contrast, the cyclic nucleotide-gated (CNG) channel inhibitor l-cis-diltiazem, as well as the chelation of intracellular Ca2+ with BAPTA, or the absence of external Ca2+ , suppressed the 2-PAA-related enhancement of gap junction coupling. Moreover, we observed a 2-PAA-dependent activation of CNG channels by a combination of electrophysiology and pharmacology. In conclusion, the stimulation of adenosine receptors in hCMEC/D3 cells induces a Ca2+ influx by opening CNG channels in a cAMP-dependent manner. Ca2+ in turn induces the formation of new gap junction plaques and a consecutive sustained enhancement of gap junction coupling. The report identifies CNG channels as a physiological link that integrates gap junction coupling into the adenosine receptor-dependent signalling of endothelial cells of the blood-brain barrier.
Assuntos
Cálcio/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Células Endoteliais/metabolismo , Junções Comunicantes/metabolismo , Microvasos/metabolismo , Receptor A2B de Adenosina/fisiologia , Adenosina/análogos & derivados , Adenosina/farmacologia , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Linhagem Celular , Ácido Egtázico/análogos & derivados , Ácido Egtázico/farmacologia , Células Endoteliais/efeitos dos fármacos , Junções Comunicantes/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Microvasos/efeitos dos fármacosRESUMO
UNLABELLED: Human T-lymphotropic virus type 1 (HTLV-1) is the etiological agent of a slowly progressive neurodegenerative disease, HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). This disease develops upon infiltration of HTLV-1-infected lymphocytes into the central nervous system, mostly the thoracic spinal cord. The central nervous system is normally protected by a physiological structure called the blood-brain barrier (BBB), which consists primarily of a continuous endothelium with tight junctions. In this study, we investigated the role of activated leukocyte cell adhesion molecule (ALCAM/CD166), a member of the immunoglobulin superfamily, in the crossing of the BBB by HTLV-1-infected lymphocytes. We demonstrated that ALCAM is overexpressed on the surface of HTLV-1-infected lymphocytes, both in chronically infected cell lines and in primary infected CD4(+) T lymphocytes. ALCAM overexpression results from the activation of the canonical NF-κB pathway by the viral transactivator Tax. In contrast, staining of spinal cord sections of HAM/TSP patients showed that ALCAM expression is not altered on the BBB endothelium in the context of HTLV-1 infection. ALCAM blockade or downregulation of ALCAM levels significantly reduced the migration of HTLV-1-infected lymphocytes across a monolayer of human BBB endothelial cells. This study suggests a potential role for ALCAM in HAM/TSP pathogenesis. IMPORTANCE: Human T-lymphotropic virus type 1 (HTLV-1) is the etiological agent of a slowly progressive neurodegenerative disease, HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). This disease is the consequence of the infiltration of HTLV-1-infected lymphocytes into the central nervous system (CNS), mostly the thoracic spinal cord. The CNS is normally protected by a physiological structure called the blood-brain barrier (BBB), which consists primarily of a continuous endothelium with tight junctions. The mechanism of migration of lymphocytes into the CNS is unclear. Here, we show that the viral transactivator Tax increases activated leukocyte cell adhesion molecule (ALCAM/CD166) expression. This molecule facilitates the migration of lymphocytes across the BBB endothelium. Targeting this molecule could be of interest in preventing or reducing the development of HAM/TSP.
Assuntos
Antígenos CD/metabolismo , Barreira Hematoencefálica , Linfócitos T CD4-Positivos/fisiologia , Linfócitos T CD4-Positivos/virologia , Moléculas de Adesão Celular Neuronais/metabolismo , Movimento Celular , Proteínas Fetais/metabolismo , Interações Hospedeiro-Patógeno , Vírus Linfotrópico T Tipo 1 Humano/fisiologia , Linfócitos T CD4-Positivos/química , Linhagem Celular , Células Endoteliais/química , Produtos do Gene tax/metabolismo , Humanos , NF-kappa B/metabolismoRESUMO
Neonatal meningitis Escherichia coli K1 (NMEC) are thought to be transmitted from mothers to newborns during delivery or by nosocomial infections. However, the source of E. coli K1 causing these infections is not clear. Avian pathogenic E. coli (APEC) have the potential to cause infection in humans while human E. coli have potential to cause colibacillosis in poultry, suggesting that these strains may lack host specificity. APEC strains are capable of causing meningitis in newborn rats; however, it is unclear whether these bacteria use similar mechanisms to that of NMEC to establish disease. Using four representative APEC and NMEC strains that belong to serotype O18, we demonstrate that these strains survive in human serum similar to that of the prototypic NMEC strain E44, a derivative of RS218. These bacteria also bind and enter both macrophages and human cerebral microvascular endothelial cells (HCMEC/D3) with similar frequency as that of E44. The amino acid sequences of the outer membrane protein A (OmpA), an important virulence factor in the pathogenesis of meningitis, are identical within these representative APEC and NMEC strains. Further, these strains also require FcγRI-α chain (CD64) and Ecgp96 as receptors for OmpA in macrophages and HCMEC/D3, respectively, to bind and enter these cells. APEC and NMEC strains induce meningitis in newborn mice with varying degree of pathology in the brains as assessed by neutrophil recruitment and neuronal apoptosis. Together, these results suggest that serotype O18 APEC strains utilize similar pathogenic mechanisms as those of NMEC strains in causing meningitis.
Assuntos
Infecções por Escherichia coli/microbiologia , Escherichia coli/patogenicidade , Meningite devida a Escherichia coli/microbiologia , Animais , Proteínas da Membrana Bacteriana Externa/biossíntese , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Sequência de Bases , Escherichia coli/classificação , Escherichia coli/genética , Escherichia coli/metabolismo , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/patologia , Expressão Gênica , Macrófagos/imunologia , Macrófagos/microbiologia , Macrófagos/patologia , Meningite devida a Escherichia coli/patologia , Camundongos , Camundongos Endogâmicos C57BL , Filogenia , Células RAW 264.7 , Receptores de IgG/imunologia , Análise de Sequência de DNA , Sorogrupo , VirulênciaRESUMO
The MSRV (multiple sclerosis-associated retrovirus) belongs to the human endogenous retrovirus HERV-W family. The envelope protein originating from the MSRV has been found in most patients with multiple sclerosis (MS). This protein (Env-ms) has pro-inflammatory properties for several types of immune cells and could therefore play a role in MS pathogenesis by promoting the leukocyte diapedesis observed in the central nervous system of patients. Our study aims to analyze the effects of Env-ms on the blood-brain barrier (BBB) at a molecular and functional level. We demonstrate that the recombinant MSRV envelope is able to stimulate several inflammatory parameters in a human BBB in vitro model, the HCMEC/D3 brain endothelial cell line. Indeed, Env-ms induces over-expression of ICAM-1, a major mediator of leukocyte adhesion to endothelial cells, in a dose-dependent manner as well as a strong dose-dependent production of the pro-inflammatory cytokines IL-6 and IL-8. Furthermore, using a silencing approach with siRNAs, we show that Env-ms is recognized via the Toll-like receptor 4 receptor, a pattern recognition receptor of innate immunity present on endothelial cells. We also show, using functional assays, that treatment of brain endothelial cells with Env-ms significantly stimulated the adhesion and the transmigration of activated immune cells through a monolayer of endothelial cells. These findings support the hypothesis that MSRV could be involved in the pathogenesis of MS disease or at least in maintenance of inflammatory conditions, thus fueling the auto-immune disorder. MSRV could also play a role in other chronic inflammatory diseases.
Assuntos
Retrovirus Endógenos , Células Endoteliais/metabolismo , Células Endoteliais/virologia , Esclerose Múltipla/etiologia , Esclerose Múltipla/metabolismo , Receptor 4 Toll-Like/metabolismo , Barreira Hematoencefálica/metabolismo , Encéfalo/imunologia , Encéfalo/metabolismo , Adesão Celular , Linhagem Celular , Citocinas/biossíntese , Expressão Gênica , Técnicas de Silenciamento de Genes , Produtos do Gene env/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Leucócitos/imunologia , Leucócitos/metabolismo , Receptor 4 Toll-Like/genéticaRESUMO
The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor activated by a variety of widespread persistent environmental pollutants such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). It can transactivate the expression of several target genes. Recently AhR transcripts were detected in isolated human brain microvessels and in the hCMEC/D3 human cerebral microvascular endothelial cell line, an in vitro model of the human cerebral endothelium. To date AhR implication in the co-regulation of ABCB1, ABCG2 and CYP1B1 at human cerebral endothelium has not been addressed. Here we investigated whether AhR could co-regulate ABCB1, ABCG2 and CYP1B1 expressions in the hCMEC/D3 cell line. Exposure to TCDD induced a concentration-dependent increase in CYP1B1 expression. We demonstrated AhR involvement in the TCDD-mediated increase in CYP1B1 expression by using small interfering RNA against AhR. Western blotting analysis also revealed an increase in CYP1B1 protein expression following TCDD exposure in hCMEC/D3. Regarding ABCB1 and ABCG2, exposure to TCDD had no effect on their protein expressions and functional activities. In conclusion our data indicated a differential modulation of CYP1B1 and ABCB1/ABCG2 expressions in hCMEC/D3 cells following TCDD exposure.
Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Córtex Cerebral/irrigação sanguínea , Córtex Cerebral/efeitos dos fármacos , Citocromo P-450 CYP1B1/metabolismo , Proteínas de Neoplasias/metabolismo , Dibenzodioxinas Policloradas/toxicidade , Receptores de Hidrocarboneto Arílico/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Linhagem Celular , Córtex Cerebral/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Humanos , Microvasos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacosRESUMO
V600E being the most common mutation in BRAF, leads to constitutive activation of the MAPK signaling pathway. The majority of V600E BRAF positive melanoma patients treated with the BRAF inhibitor vemurafenib showed initial good clinical responses but relapsed due to acquired resistance to the drug. The aim of the present study was to identify possible biomarkers associated with the emergence of drug resistant melanoma cells. To this end we analyzed the differential gene expression of vemurafenib-sensitive and vemurafenib resistant brain and lung metastasizing melanoma cells. The major finding of this study is that the in vitro induction of vemurafenib resistance in melanoma cells is associated with an increased malignancy phenotype of these cells. Resistant cells expressed higher levels of genes coding for cancer stem cell markers (JARID1B, CD271 and Fibronectin) as well as genes involved in drug resistance (ABCG2), cell invasion and promotion of metastasis (MMP-1 and MMP-2). We also showed that drug-resistant melanoma cells adhere better to and transmigrate more efficiently through lung endothelial cells than drug-sensitive cells. The former cells also alter their microenvironment in a different manner from that of drug-sensitive cells. Biomarkers and molecular mechanisms associated with drug resistance may serve as targets for therapy of drug-resistant cancer.
Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/secundário , Movimento Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Indóis/farmacologia , Neoplasias Pulmonares/secundário , Melanoma/patologia , Sulfonamidas/farmacologia , Animais , Biomarcadores Tumorais/genética , Western Blotting , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Proliferação de Células/efeitos dos fármacos , Citometria de Fluxo , Perfilação da Expressão Gênica , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Masculino , Melanoma/tratamento farmacológico , Melanoma/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Células Tumorais Cultivadas , Vemurafenib , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Aicardi-Goutières syndrome (AGS) is a monogenic inflammatory encephalopathy caused by mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR1, or MDA5. Mutations in those genes affect normal RNA/DNA intracellular metabolism and detection, triggering an autoimmune response with an increase in cerebral IFN-α production by astrocytes. Microangiopathy and vascular disease also contribute to the neuropathology in AGS. In this study, we report that AGS gene silencing of TREX1, SAMHD1, RNASEH2A, and ADAR1 by short hairpin RNAs in human neural stem cell-derived astrocytes, human primary astrocytes, and brain-derived endothelial cells leads to an antiviral status of these cells compared with nontarget short hairpin RNA-treated cells. We observed a distinct activation of the IFN-stimulated gene signature with a substantial increase in the release of proinflammatory cytokines (IL-6) and chemokines (CXCL10 and CCL5). A differential impact of AGS gene silencing was noted; silencing TREX1 gave rise to the most dramatic in both cell types. Our findings fit well with the observation that patients carrying mutations in TREX1 experience an earlier onset and fatal outcome. We provide in the present study, to our knowledge for the first time, insight into how astrocytic and endothelial activation of antiviral status may differentially lead to cerebral pathology, suggesting a rational link between proinflammatory mediators and disease severity in AGS.
Assuntos
Astrócitos/imunologia , Doenças Autoimunes do Sistema Nervoso/imunologia , Citocinas/imunologia , Células Endoteliais/imunologia , Interferon-alfa/imunologia , Malformações do Sistema Nervoso/imunologia , Células-Tronco Neurais/imunologia , Adenosina Desaminase/genética , Adenosina Desaminase/imunologia , Astrócitos/patologia , Doenças Autoimunes do Sistema Nervoso/genética , Doenças Autoimunes do Sistema Nervoso/mortalidade , Doenças Autoimunes do Sistema Nervoso/patologia , Citocinas/genética , Células Endoteliais/patologia , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/imunologia , Inativação Gênica , Células HEK293 , Humanos , Interferon-alfa/genética , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/imunologia , Mutação , Malformações do Sistema Nervoso/genética , Malformações do Sistema Nervoso/mortalidade , Malformações do Sistema Nervoso/patologia , Células-Tronco Neurais/patologia , Fosfoproteínas/genética , Fosfoproteínas/imunologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/imunologia , Ribonuclease H/genética , Ribonuclease H/imunologia , Proteína 1 com Domínio SAM e Domínio HDRESUMO
Melanoma is the leading cause of skin cancer mortality. The major cause of melanoma mortality is metastasis to distant organs, frequently to the brain. The microenvironment plays a critical role in tumourigenesis and metastasis. In order to treat or prevent metastasis, the interactions of disseminated tumour cells with the microenvironment at the metastatic organ have to be elucidated. However, the role of brain stromal cells in facilitating metastatic growth is poorly understood. Astrocytes are glial cells that function in repair and scarring of the brain following injury, in part via mediating neuroinflammation, but the role of astrocytes in melanoma brain metastasis is largely unresolved. Here we show that astrocytes can be reprogrammed by human brain-metastasizing melanoma cells to express pro-inflammatory factors, including the cytokine IL-23, which was highly expressed by metastases-associated astrocytes in vivo. Moreover, we show that the interactions between astrocytes and melanoma cells are reciprocal: paracrine signalling from astrocytes up-regulates the secretion of the matrix metalloproteinase MMP2 and enhances the invasiveness of brain-metastasizing melanoma cells. IL-23 was sufficient to increase melanoma cell invasion, and neutralizing antibodies to IL-23 could block this enhanced migration, implying a functional role for astrocyte-derived IL-23 in facilitating the progression of melanoma brain metastasis. Knocking down the expression of MMP2 in melanoma cells resulted in inhibition of IL-23-induced invasiveness. Thus, our study demonstrates that bidirectional signalling between melanoma cells and astrocytes results in the formation of a pro-inflammatory milieu in the brain, and in functional enhancement of the metastatic potential of disseminated melanoma cells.