Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(9)2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35563134

RESUMO

Glioblastomas represent approximatively half of all gliomas and are the most deadly and aggressive form. Their therapeutic resistance and tumor relapse rely on a subpopulation of cells that are called Glioma Stem Cells (GSCs). Here, we investigated the role of the long non-coding RNA HOXA-AS2 in GSC biology using descriptive and functional analyses of glioma samples classified according to their isocitrate dehydrogenase (IDH) gene mutation status, and of GSC lines. We found that HOXA-AS2 is overexpressed only in aggressive (IDHwt) glioma and GSC lines. ShRNA-based depletion of HOXA-AS2 in GSCs decreased cell proliferation and altered the expression of several hundreds of genes. Integrative analysis revealed that these expression changes were not associated with changes in DNA methylation or chromatin signatures at the promoter of the majority of genes deregulated following HOXA-AS2 silencing in GSCs, suggesting a post-transcriptional regulation. In addition, transcription factor binding motif enrichment and correlation analyses indicated that HOXA-AS2 affects, directly or indirectly, the expression of key transcription factors implicated in GCS biology, including E2F8, E2F1, STAT1, and ATF3, thus contributing to GCS aggressiveness by promoting their proliferation and modulating the inflammation pathway.


Assuntos
Glioma , RNA Longo não Codificante , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Glioma/patologia , Humanos , Inflamação/genética , Células-Tronco Neoplásicas/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
2.
Hum Mol Genet ; 31(15): 2606-2622, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35298627

RESUMO

Besides the consequences of retrotransposition, long interspersed element 1 (L1) retrotransposons can affect the host genome through their antisense promoter. In addition to the sense promoter, the evolutionarily recent L1 retrotransposons, which are present in several thousand copies, also possess an anti-sense promoter that can produce L1 chimeric transcripts (LCT) composed of the L1 5' UTR followed by the adjacent genomic sequence. The full extent to which LCT expression occurs in a given tissue and whether disruption of the defense mechanisms that normally control L1 retrotransposons affects their expression and function in cancer cells, remain to be established. By using CLIFinder, a dedicated bioinformatics tool, we found that LCT expression was widespread in normal brain and aggressive glioma samples, and that approximately 17% of recent L1 retrotransposons, from the L1PA1 to L1PA7 subfamilies, were involved in their production. Importantly, the transcriptional activities of the L1 antisense promoters and of their host loci were coupled. Accordingly, we detected LCT-producing L1 retrotransposons mainly in transcriptionally active genes and genomic loci. Moreover, changes in the host genomic locus expression level in glioma were associated with a similar change in LCT expression level, regardless of the L1 promoter methylation status. Our findings support a model in which the host genomic locus transcriptional activity is the main driving force of LCT expression. We hypothesize that this model is more applicable when host gene and LCT are transcribed from the same strand.


Assuntos
Glioma , Retroelementos , Encéfalo , Glioma/genética , Humanos , Elementos Nucleotídeos Longos e Dispersos/genética , Regiões Promotoras Genéticas/genética , Retroelementos/genética
3.
Mol Oncol ; 15(8): 1995-2010, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33720519

RESUMO

In human, the 39 coding HOX genes and 18 referenced noncoding antisense transcripts are arranged in four genomic clusters named HOXA, B, C, and D. This highly conserved family belongs to the homeobox class of genes that encode transcription factors required for normal development. Therefore, HOX gene deregulation might contribute to the development of many cancer types. Here, we study HOX gene deregulation in adult glioma, a common type of primary brain tumor. We performed extensive molecular analysis of tumor samples, classified according to their isocitrate dehydrogenase (IDH1) gene mutation status, and of glioma stem cells. We found widespread expression of sense and antisense HOX transcripts only in aggressive (IDHwt) glioma samples, although the four HOX clusters displayed DNA hypermethylation. Integrative analysis of expression, DNA methylation, and histone modification signatures along the clusters revealed that HOX gene upregulation relies on canonical and alternative bivalent CpG island promoters that escape hypermethylation. H3K27me3 loss at these promoters emerges as the main cause of widespread HOX gene upregulation in IDHwt glioma cell lines and tumors. Our study provides the first comprehensive description of the epigenetic changes at HOX clusters and their contribution to the transcriptional changes observed in adult glioma. It also identified putative 'master' HOX proteins that might contribute to the tumorigenic potential of glioma stem cells.


Assuntos
Neoplasias Encefálicas/genética , Metilação de DNA , Genes Homeobox , Glioma/genética , Histonas/genética , Regiões Promotoras Genéticas , Neoplasias Encefálicas/enzimologia , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Glioma/enzimologia , Glioma/patologia , Humanos , Isocitrato Desidrogenase/genética , Transcrição Gênica
4.
Genome Res ; 29(10): 1605-1621, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31533980

RESUMO

In cancer cells, aberrant DNA methylation is commonly associated with transcriptional alterations, including silencing of tumor suppressor genes. However, multiple epigenetic mechanisms, including polycomb repressive marks, contribute to gene deregulation in cancer. To dissect the relative contribution of DNA methylation-dependent and -independent mechanisms to transcriptional alterations at CpG island/promoter-associated genes in cancer, we studied 70 samples of adult glioma, a widespread type of brain tumor, classified according to their isocitrate dehydrogenase (IDH1) mutation status. We found that most transcriptional alterations in tumor samples were DNA methylation-independent. Instead, altered histone H3 trimethylation at lysine 27 (H3K27me3) was the predominant molecular defect at deregulated genes. Our results also suggest that the presence of a bivalent chromatin signature at CpG island promoters in stem cells predisposes not only to hypermethylation, as widely documented, but more generally to all types of transcriptional alterations in transformed cells. In addition, the gene expression strength in healthy brain cells influences the choice between DNA methylation- and H3K27me3-associated silencing in glioma. Highly expressed genes were more likely to be repressed by H3K27me3 than by DNA methylation. Our findings support a model in which altered H3K27me3 dynamics, more specifically defects in the interplay between polycomb protein complexes and the brain-specific transcriptional machinery, is the main cause of transcriptional alteration in glioma cells. Our study provides the first comprehensive description of epigenetic changes in glioma and their relative contribution to transcriptional changes. It may be useful for the design of drugs targeting cancer-related epigenetic defects.


Assuntos
Metilação de DNA/genética , Epigênese Genética/genética , Glioma/genética , Transcrição Gênica , Adulto , Linhagem Celular Tumoral , Cromatina/genética , Ilhas de CpG/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Glioma/patologia , Histonas/genética , Humanos , Isocitrato Desidrogenase/genética , Histona Desmetilases com o Domínio Jumonji/genética , Masculino , Regiões Promotoras Genéticas
5.
Mol Oncol ; 12(6): 814-829, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29575763

RESUMO

Despite the high efficiency of tyrosine kinase inhibitors (TKI), some patients with chronic myeloid leukemia (CML) will display residual disease that can become resistant to treatment, indicating intraclonal heterogeneity in chronic-phase CML (CP-CML). To determine the basis of this heterogeneity, we conducted the first exhaustive characterization of the DNA methylation pattern of sorted CP-CML CD34+ CD15- (immature) and CD34- CD15+ (mature) cells at diagnosis (prior to any treatment) and compared it to that of CD34+ CD15- and CD34- CD15+ cells isolated from healthy donors (HD). In both cell types, we identified several hundreds of differentially methylated regions (DMRs) showing DNA methylation changes between CP-CML and HD samples, with only a subset of them in common between CD34+ CD15- and CD34- CD15+ cells. This suggested DNA methylation variability within the same CML clone. We also identified 70 genes that could be aberrantly repressed upon hypermethylation and 171 genes that could be aberrantly expressed upon hypomethylation of some of these DMRs in CP-CML cells, among which 18 and 81, respectively, were in CP-CML CD34+ CD15- cells only. We then validated the DNA methylation and expression defects of selected candidate genes. Specifically, we identified GAS2, a candidate oncogene, as a new example of gene the hypomethylation of which is associated with robust overexpression in CP-CML cells. Altogether, we demonstrated that DNA methylation abnormalities exist at early stages of CML and can affect the transcriptional landscape of malignant cells. These observations could lead to the development of combination treatments with epigenetic drugs and TKI for CP-CML.


Assuntos
Antígenos CD34/metabolismo , Metilação de DNA/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Antígenos CD15/metabolismo , Transcrição Gênica , Adulto , Idoso , Idoso de 80 Anos ou mais , Ilhas de CpG/genética , Feminino , Regulação Leucêmica da Expressão Gênica , Estudos de Associação Genética , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Regiões Promotoras Genéticas/genética , Adulto Jovem
6.
Hum Mutat ; 38(6): 615-620, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28256047

RESUMO

Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) is a rare cause of pulmonary hypertension in newborns. Maternally inherited point mutations in Forkhead Box F1 gene (FOXF1), deletions of the gene, or its long-range enhancers on the maternal allele are responsible for this neonatal lethal disorder. Here, we describe monozygotic twins and one full-term newborn with ACD and gastrointestinal malformations caused by de novo mutations of FOXF1 on the maternal-inherited alleles. Since this parental transmission is consistent with genomic imprinting, the parent-of-origin specific monoallelic expression of genes, we have undertaken a detailed analysis of both allelic expression and DNA methylation. FOXF1 and its neighboring gene FENDRR were both biallelically expressed in a wide range of fetal tissues, including lung and intestine. Furthermore, detailed methylation screening within the 16q24.1 regions failed to identify regions of allelic methylation, suggesting that disrupted imprinting is not responsible for ACDMPV.


Assuntos
Fatores de Transcrição Forkhead/genética , Impressão Genômica , Síndrome da Persistência do Padrão de Circulação Fetal/genética , Alvéolos Pulmonares/anormalidades , Hibridização Genômica Comparativa , Metilação de DNA/genética , Feminino , Humanos , Hipertensão Pulmonar , Recém-Nascido , Herança Materna/genética , Mutação , Síndrome da Persistência do Padrão de Circulação Fetal/complicações , Síndrome da Persistência do Padrão de Circulação Fetal/patologia , Gravidez , Alvéolos Pulmonares/patologia , Gêmeos Monozigóticos
7.
Oncotarget ; 8(3): 4110-4124, 2017 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-27926531

RESUMO

CpG islands (CGI) marked by bivalent chromatin in stem cells are believed to be more prone to aberrant DNA methylation in tumor cells. The robustness and genome-wide extent of this instructive program in different cancer types remain to be determined. To address this issue we developed a user-friendly approach to integrate the stem cell chromatin signature in customized DNA methylation analyses. We used publicly available ChIP-sequencing datasets of several human embryonic stem cell (hESC) lines to determine the extent of bivalent chromatin genome-wide. We then created annotated lists of high-confidence bivalent, H3K4me3-only and H3K27me3-only chromatin regions. The main features of bivalent regions included localization in CGI/promoters, depletion in retroelements and enrichment in specific histone modifications, including the poorly characterized H3K23me2 mark. Moreover, bivalent promoters could be classified in three clusters based on PRC2 and PolII complexes occupancy. Genes with bivalent promoters of the PRC2-defined cluster displayed the lowest expression upon differentiation. As proof-of-concept, we assessed the DNA methylation pattern of eight types of tumors and confirmed that aberrant cancer-associated DNA hypermethylation preferentially targets CGI characterized by bivalent chromatin in hESCs. We also found that such aberrant DNA hypermethylation affected particularly bivalent CGI/promoters associated with genes that tend to remain repressed upon differentiation. Strikingly, bivalent CGI were the most affected by aberrant DNA hypermethylation in both CpG Island Methylator Phenotype-positive (CIMP+) and CIMP-negative tumors, suggesting that, besides transcriptional silencing in the pre-tumorigenic cells, the bivalent chromatin signature in hESCs is a key determinant of the instructive program for aberrant DNA methylation.


Assuntos
Metilação de DNA , Histonas/genética , Neoplasias/genética , Regiões Promotoras Genéticas , Diferenciação Celular , Linhagem Celular Tumoral , Ilhas de CpG , Bases de Dados Genéticas , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Epigênese Genética , Código das Histonas , Proteínas de Homeodomínio/genética , Humanos , Especificidade de Órgãos
8.
Cancer Lett ; 386: 196-207, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27894957

RESUMO

Epigenetic modifications have been shown to be important in developmental tumors as Ewing sarcoma. We profiled the DNA methylation status of 15 primary tumors, 7 cell lines, 10 healthy tissues and 4 human mesenchymal stem cells lines samples using the Infinium Human Methylation 450K. Differential methylation analysis between Ewing sarcoma and reference samples revealed 1166 hypermethylated and 864 hypomethylated CpG sites (Bonferroni p < 0.05, δ-ß-value with absolute difference of >0.20) corresponding to 392 and 470 genes respectively. Gene Ontology analysis of genes differentially methylated in Ewing sarcoma samples showed a significant enrichment of developmental genes. Membrane and cell signal genes were also enriched, among those, 11 were related to caveola formation. We identified differential hypermethylation of CpGs located in the body and S-Shore of the PTRF gene in Ewing sarcoma that correlated with its repressed transcriptional state. Reintroduction of PTRF/Cavin-1 in Ewing sarcoma cells revealed a role of this protein as a tumor suppressor. Restoration of caveolae in the membrane of Ewing sarcoma cells, by exogenously reintroducing PTRF, disrupts the MDM2/p53 complex, which consequently results in the activation of p53 and the induction of apoptosis.


Assuntos
Neoplasias Ósseas/genética , Caveolina 1/genética , Metilação de DNA , Epigênese Genética , Perfilação da Expressão Gênica/métodos , Genes Supressores de Tumor , Proteínas de Ligação a RNA/genética , Sarcoma de Ewing/genética , Animais , Apoptose , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Caveolina 1/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Camundongos Nus , Fosforilação , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteínas de Ligação a RNA/metabolismo , Sarcoma de Ewing/metabolismo , Sarcoma de Ewing/patologia , Transdução de Sinais , Espanha , Transfecção , Carga Tumoral , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
9.
Carcinogenesis ; 37(2): 169-176, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26717998

RESUMO

Malignant gliomas are the most common primary brain tumors. Grade III and IV gliomas harboring wild-type IDH1/2 are the most aggressive. In addition to surgery and radiotherapy, concomitant and adjuvant chemotherapy with temozolomide (TMZ) significantly improves overall survival (OS). The methylation status of the O(6)-methylguanine-DNA methyltransferase (MGMT) promoter is predictive of TMZ response and a prognostic marker of cancer outcome. However, the promoter regions the methylation of which correlates best with survival in aggressive glioma and whether the promoter methylation status predictive value could be refined or improved by other MGMT-associated molecular markers are not precisely known. In a cohort of 87 malignant gliomas treated with radiotherapy and TMZ-based chemotherapy, we retrospectively determined the MGMT promoter methylation status, genotyped single nucleotide polymorphisms (SNPs) in the promoter region and quantified MGMT mRNA expression level. Each of these variables was correlated with each other and with the patients' OS. We found that methylation of the CpG sites within MGMT exon 1 best correlated with OS and MGMT expression levels, and confirmed MGMT methylation as a stronger independent prognostic factor compared to MGMT transcription levels. Our main finding is that the presence of only the A allele at the rs34180180 SNP in the tumor was significantly associated with shorter OS, independently of the MGMT methylation status. In conclusion, in the clinic, rs34180180 SNP genotyping could improve the prognostic value of the MGMT promoter methylation assay in patients with aggressive glioma treated with TMZ.


Assuntos
Neoplasias Encefálicas/genética , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Glioma/genética , Polimorfismo de Nucleotídeo Único , Proteínas Supressoras de Tumor/genética , Adulto , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Metilação de DNA/genética , Feminino , Genótipo , Glioma/mortalidade , Glioma/patologia , Humanos , Estimativa de Kaplan-Meier , Masculino , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , Prognóstico , Regiões Promotoras Genéticas/genética , Modelos de Riscos Proporcionais , Estudos Retrospectivos
10.
Epigenetics ; 9(5): 783-90, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24589629

RESUMO

Cancer is as much an epigenetic disease as a genetic one; however, the interplay between these two processes is unclear. Recently, it has been shown that a large proportion of DNA methylation variability can be explained by allele-specific methylation (ASM), either at classical imprinted loci or those regulated by underlying genetic variants. During a recent screen for imprinted differentially methylated regions, we identified the genomic interval overlapping the non-coding nc886 RNA (previously known as vtRNA2-1) as an atypical ASM that shows variable levels of methylation, predominantly on the maternal allele in many tissues. Here we show that the nc886 interval is the first example of a polymorphic imprinted DMR in humans. Further analysis of the region suggests that the interval subjected to ASM is approximately 2 kb in size and somatically acquired. An in depth analysis of this region in primary cancer samples with matching normal adjacent tissue from the Cancer Genome Atlas revealed that aberrant methylation in bladder, breast, colon and lung tumors occurred in approximately 27% of cases. Hypermethylation occurred more frequently than hypomethylation. Using additional normal-tumor paired samples we show that on rare occasions the aberrant methylation profile is due to loss-of-heterozygosity. This work therefore suggests that the nc886 locus is subject to variable allelic methylation that undergoes cancer-associated epigenetic changes in solid tumors.


Assuntos
Metilação de DNA , Loci Gênicos , Impressão Genômica , Neoplasias/genética , RNA não Traduzido/genética , Sequências de Repetição em Tandem , Adulto , Neoplasias da Mama/genética , Neoplasias do Colo/genética , Feminino , Humanos , Perda de Heterozigosidade , Neoplasias Pulmonares/genética , Pessoa de Meia-Idade , Regiões Promotoras Genéticas , Neoplasias da Bexiga Urinária/genética , Adulto Jovem
11.
Genome Res ; 24(4): 554-69, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24402520

RESUMO

Differential methylation between the two alleles of a gene has been observed in imprinted regions, where the methylation of one allele occurs on a parent-of-origin basis, the inactive X-chromosome in females, and at those loci whose methylation is driven by genetic variants. We have extensively characterized imprinted methylation in a substantial range of normal human tissues, reciprocal genome-wide uniparental disomies, and hydatidiform moles, using a combination of whole-genome bisulfite sequencing and high-density methylation microarrays. This approach allowed us to define methylation profiles at known imprinted domains at base-pair resolution, as well as to identify 21 novel loci harboring parent-of-origin methylation, 15 of which are restricted to the placenta. We observe that the extent of imprinted differentially methylated regions (DMRs) is extremely similar between tissues, with the exception of the placenta. This extra-embryonic tissue often adopts a different methylation profile compared to somatic tissues. Further, we profiled all imprinted DMRs in sperm and embryonic stem cells derived from parthenogenetically activated oocytes, individual blastomeres, and blastocysts, in order to identify primary DMRs and reveal the extent of reprogramming during preimplantation development. Intriguingly, we find that in contrast to ubiquitous imprints, the majority of placenta-specific imprinted DMRs are unmethylated in sperm and all human embryonic stem cells. Therefore, placental-specific imprinting provides evidence for an inheritable epigenetic state that is independent of DNA methylation and the existence of a novel imprinting mechanism at these loci.


Assuntos
Metilação de DNA/genética , Impressão Genômica/genética , Células Germinativas , Alelos , Ilhas de CpG/genética , Células-Tronco Embrionárias/citologia , Feminino , Expressão Gênica/genética , Genoma Humano , Humanos , Placenta/metabolismo , Gravidez
12.
J Hematol Oncol ; 7: 4, 2014 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-24405639

RESUMO

BACKGROUND: Wilms tumor 1 (WT1) is over-expressed in numerous cancers with respect to normal cells, and has either a tumor suppressor or oncogenic role depending on cellular context. This gene is associated with numerous alternatively spliced transcripts, which initiate from two different unique first exons within the WT1 and the alternative (A)WT1 promoter intervals. Within the hematological system, WT1 expression is restricted to CD34+/CD38- cells and is undetectable after differentiation. Detectable expression of this gene is an excellent marker for minimal residual disease in acute myeloid leukemia (AML), but the underlying epigenetic alterations are unknown. METHODS: To determine the changes in the underlying epigenetic landscape responsible for this expression, we characterized expression, DNA methylation and histone modification profiles in 28 hematological cancer cell lines and confirmed the methylation signature in 356 cytogenetically well-characterized primary hematological malignancies. RESULTS: Despite high expression of WT1 and AWT1 transcripts in AML-derived cell lines, we observe robust hypermethylation of the AWT1 promoter and an epigenetic switch from a permissive to repressive chromatin structure between normal cells and AML cell lines. Subsequent methylation analysis in our primary leukemia and lymphoma cohort revealed that the epigenetic signature identified in cell lines is specific to myeloid-lineage malignancies, irrespective of underlying mutational status or translocation. In addition to being a highly specific marker for AML diagnosis (positive predictive value 100%; sensitivity 86.1%; negative predictive value 89.4%), we show that AWT1 hypermethylation also discriminates patients that relapse from those achieving complete remission after hematopoietic stem cell transplantation, with similar efficiency to WT1 expression profiling. CONCLUSIONS: We describe a methylation signature of the AWT1 promoter CpG island that is a promising marker for classifying myeloid-derived leukemias. In addition AWT1 hypermethylation is ideally suited to monitor the recurrence of disease during remission in patients undergoing allogeneic stem cell transfer.


Assuntos
Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Neoplasias Hematológicas/genética , Leucemia Mieloide/genética , Regiões Promotoras Genéticas/genética , Proteínas WT1/genética , Doença Aguda , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Processamento Alternativo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Criança , Pré-Escolar , Ilhas de CpG/genética , Feminino , Células HL-60 , Neoplasias Hematológicas/metabolismo , Neoplasias Hematológicas/patologia , Humanos , Células K562 , Leucemia Mieloide/metabolismo , Leucemia Mieloide/patologia , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células U937 , Proteínas WT1/metabolismo , Adulto Jovem
13.
Nucleic Acids Res ; 41(4): 2171-9, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23295672

RESUMO

Paternal duplications of chromosome 6q24, a region that contains the imprinted PLAGL1 and HYMAI transcripts, are associated with transient neonatal diabetes mellitus. A common feature of imprinted genes is that they tend to cluster together, presumably as a result of sharing common cis-acting regulatory elements. To determine the extent of this imprinted cluster in human and mouse, we have undertaken a systematic analysis of allelic expression and DNA methylation of the genes mapping within an ∼1.4-Mb region flanking PLAGL1/Plagl1. We confirm that all nine neighbouring genes are biallelically expressed in both species. In human we identify two novel paternally expressed PLAGL1 coding transcripts that originate from unique promoter regions. Chromatin immunoprecipitation for CTCF and the cohesin subunits RAD21 and SMC3 reveals evolutionarily conserved binding sites within unmethylated regions ∼5 kb downstream of the PLAGL1 differentially methylated region and within the PLAGL1 3' untranslated region (UTR). Higher-order chromatin looping occurs between these regions in both expressing and non-expressing tissues, forming a non-allelic chromatin loop around the PLAGL1/Plagl1 gene. In placenta and brain tissues, we identify an additional interaction between the PLAGL1 P3/P4 promoters and the unmethylated element downstream of the PLAGL1 differentially methylated region that we propose facilitates imprinted expression of these alternative isoforms.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cromatina/química , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/genética , Impressão Genômica , Proteínas Repressoras/metabolismo , Alelos , Animais , Fator de Ligação a CCCTC , Proteínas de Ciclo Celular/genética , Cromatina/metabolismo , Cromossomos Humanos Par 6 , Proteínas de Ligação a DNA/metabolismo , Feminino , Genes Supressores de Tumor , Genótipo , Humanos , Camundongos , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Placenta/metabolismo , Gravidez , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , Fatores de Transcrição/genética , Coesinas
14.
PLoS One ; 7(6): e38907, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22723905

RESUMO

Genomic imprinting is a complex epigenetic mechanism of transcriptional control that utilizes DNA methylation and histone modifications to bring about parent-of-origin specific monoallelic expression in mammals. Genes subject to imprinting are often organised in clusters associated with large non-coding RNAs (ncRNAs), some of which have cis-regulatory functions. Here we have undertaken a detailed allelic expression analysis of an imprinted domain on mouse proximal chromosome 10 comprising the paternally expressed Plagl1 gene. We identified three novel Plagl1 transcripts, only one of which contains protein-coding exons. In addition, we characterised two unspliced ncRNAs, Hymai, the mouse orthologue of HYMAI, and Plagl1it (Plagl1 intronic transcript), a transcript located in intron 5 of Plagl1. Imprinted expression of these novel ncRNAs requires DNMT3L-mediated maternal DNA methylation, which is also indispensable for establishing the correct chromatin profile at the Plagl1 DMR. Significantly, the two ncRNAs are retained in the nucleus, consistent with a potential regulatory function at the imprinted domain. Analysis with catRAPID, a protein-ncRNA association prediction algorithm, suggests that Hymai and Plagl1it RNAs both have potentially high affinity for Trithorax chromatin regulators. The two ncRNAs could therefore help to protect the paternal allele from DNA methylation by attracting Trithorax proteins that mediate H3 lysine-4 methylation.


Assuntos
Proteínas de Ciclo Celular/genética , Cromatina/metabolismo , RNA Mensageiro/genética , RNA não Traduzido/genética , Fatores de Transcrição/genética , Alelos , Animais , Sequência de Bases , Núcleo Celular/metabolismo , Proteínas Cromossômicas não Histona , DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA , Regulação da Expressão Gênica , Genes Supressores de Tumor , Impressão Genômica , Camundongos , Dados de Sequência Molecular , Isoformas de RNA , Estabilidade de RNA , Transporte de RNA , Transcrição Gênica
15.
PLoS One ; 7(5): e37923, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22662250

RESUMO

It was recently shown that a long non-coding RNA (lncRNA), that we named the 91H RNA (i.e. antisense H19 transcript), is overexpressed in human breast tumours and contributes in trans to the expression of the Insulin-like Growth Factor 2 (IGF2) gene on the paternal chromosome. Our preliminary experiments suggested that an H19 antisense transcript having a similar function may also be conserved in the mouse. In the present work, we further characterise the mouse 91H RNA and, using a genetic complementation approach in H19 KO myoblast cells, we show that ectopic expression of the mouse 91H RNA can up-regulate Igf2 expression in trans despite almost complete unmethylation of the Imprinting-Control Region (ICR). We then demonstrate that this activation occurs at the transcriptional level by activation of a previously unknown Igf2 promoter which displays, in mouse tissues, a preferential mesodermic expression (Pm promoter). Finally, our experiments indicate that a large excess of the H19 transcript can counteract 91H-mediated Igf2 activation. Our work contributes, in conjunction with other recent findings, to open new horizons to our understanding of Igf2 gene regulation and functions of the 91H/H19 RNAs in normal and pathological conditions.


Assuntos
Regulação da Expressão Gênica , Fator de Crescimento Insulin-Like II/genética , Mioblastos/metabolismo , Regiões Promotoras Genéticas , RNA Antissenso/metabolismo , RNA Longo não Codificante/genética , Ativação Transcricional , Animais , Sequência de Bases , Metilação de DNA , Ordem dos Genes , Inativação Gênica , Impressão Genômica , Camundongos , Dados de Sequência Molecular , Sítio de Iniciação de Transcrição , Transcrição Gênica
16.
PLoS One ; 7(4): e35318, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22523585

RESUMO

The cornea is a transparent, avascular tissue that acts as the major refractive surface of the eye. Corneal transparency, assured by the inner stroma, is vital for this role. Disruption in stromal transparency can occur in some inherited or acquired diseases. As a consequence, light entering the eye is blocked or distorted, leading to decreased visual acuity. Possible treatment for restoring transparency could be via viral-based gene therapy. The stroma is particularly amenable to this strategy due to its immunoprivileged nature and low turnover rate. We assayed the potential of AAV vectors to transduce keratocytes following intra-stromal injection in vivo in the mouse cornea and ex vivo in human explants. In murine and human corneas, we transduced the entire stroma using a single injection, preferentially targeted keratocytes and achieved long-term gene transfer (up to 17 months in vivo in mice). Of the serotypes tested, AAV2/8 was the most promising for gene transfer in both mouse and man. Furthermore, transgene expression could be transiently increased following aggression to the cornea.


Assuntos
Córnea/virologia , Dependovirus/genética , Terapia Genética/métodos , Vetores Genéticos , Transdução Genética/métodos , Animais , Ceratócitos da Córnea/citologia , Ceratócitos da Córnea/metabolismo , Substância Própria/citologia , Substância Própria/metabolismo , Proteínas de Fluorescência Verde/administração & dosagem , Proteínas de Fluorescência Verde/biossíntese , Humanos , Masculino , Camundongos , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA