Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Med Phys ; 51(2): 809-825, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37477551

RESUMO

BACKGROUND: There is increasing interest in using ultrasound for thermal ablation, histotripsy, and thermal or cavitational enhancement of drug delivery for the treatment of pancreatic cancer. Ultrasonic and thermal modelling conducted as part of the treatment planning process requires acoustic property values for all constituent tissues, but the literature contains no data for the human pancreas. PURPOSE: This study presents the first acoustic property measurements of human pancreatic samples and provides examples of how these properties impact a broad range of ultrasound therapies. METHODS: Data were collected on human pancreatic tissue samples at physiological temperature from 23 consented patients in cooperation with a hospital pathology laboratory. Propagation of ultrasound over the 2.1-4.5 MHz frequency range through samples of various thicknesses and pathologies was measured using a set of custom-built ultrasonic calipers, with the data processed to estimate sound speed and attenuation. The results were used in acoustic and thermal simulations to illustrate the impacts on extracorporeal ultrasound therapies for mild hyperthermia, thermal ablation, and histotripsy implemented with a CE-marked clinical system operating at 0.96 MHz. RESULTS: The mean sound speed and attenuation coefficient values for human samples were well below the range of values in the literature for non-human pancreata, while the human attenuation power law exponents were substantially higher. The simulated impacts on ultrasound mediated therapies for the pancreas indicated that when using the human data instead of the literature average, there was a 30% reduction in median temperature elevation in the treatment volume for mild hyperthermia and 43% smaller volume within a 60°C contour for thermal ablation, all driven by attenuation. By comparison, impacts on boiling and intrinsic threshold histotripsy were minor, with peak pressures changing by less than 15% (positive) and 1% (negative) as a consequence of the counteracting effects of attenuation and sound speed. CONCLUSION: This study provides the most complete set of speed of sound and attenuation data available for the human pancreas, and it reiterates the importance of acoustic material properties in the planning and conduct of ultrasound-mediated procedures, particularly thermal therapies.


Assuntos
Neoplasias Pancreáticas , Terapia por Ultrassom , Humanos , Som , Ultrassonografia , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/terapia , Pâncreas/diagnóstico por imagem
2.
Artigo em Inglês | MEDLINE | ID: mdl-36112556

RESUMO

Nonlinear ultrasonic emissions produced during a therapeutic ultrasound procedure can be detected, localized, and quantified through a class of methods that can be referred to as passive acoustic mapping (PAM). While a variety of PAM beamforming algorithms may be employed, they share a common limitation that a single sound speed is specified for both phase steering of array elements and for calculation of source power or energy. The specified value may be inadequate whether derived from B-mode-based metrics or literature values for constituent materials. This study employed experiments and simulations with linear and curvilinear array geometries to investigate the impact of in situ sound speed uncertainties on source localization in layered media. The data were also used to evaluate a new method for optimizing coregistration of PAM and B-mode images. Coregistration errors as large as 10 mm were observed with the curvilinear array, which also showed much greater sound speed sensitivity than the linear array. Errors with both array geometries were typically reduced to the order of 0.1 mm using the proposed optimization method regardless of beamformer choice or whether the array was calibrated. In a further step toward reliable implementation of PAM, the current work provides an approach that can help ensure that therapeutic ultrasound procedures are accurately guided by cavitation emissions.


Assuntos
Acústica , Terapia por Ultrassom , Terapia por Ultrassom/métodos , Ultrassonografia/métodos , Algoritmos , Som
3.
Ultrasound Med Biol ; 47(4): 982-997, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33451816

RESUMO

Lyso-thermosensitive liposomes (LTSLs) are specifically designed to release chemotherapy agents under conditions of mild hyperthermia. Preclinical studies have indicated that magnetic resonance (MR)-guided focused ultrasound (FUS) systems can generate well-controlled volumetric hyperthermia using real-time thermometry. However, high-throughput clinical translation of these approaches for drug delivery is challenging, not least because of the significant cost overhead of MR guidance and the much larger volumes that need to be heated clinically. Using an ultrasound-guided extracorporeal clinical FUS device (Chongqing HAIFU, JC200) with thermistors in a non-perfused ex vivo bovine liver tissue model with ribs, we present an optimised strategy for rapidly inducing (5-15 min) and sustaining (>30 min) mild hyperthermia (ΔT <+4°C) in large tissue volumes (≤92 cm3). We describe successful clinical translation in a first-in-human clinical trial of targeted drug delivery of LTSLs (TARDOX: a phase I study to investigate drug release from thermosensitive liposomes in liver tumours), in which targeted tumour hyperthermia resulted in localised chemo-ablation. The heating strategy is potentially applicable to other indications and ultrasound-guided FUS devices.


Assuntos
Adenocarcinoma/tratamento farmacológico , Antibióticos Antineoplásicos/administração & dosagem , Neoplasias Colorretais/patologia , Sistemas de Liberação de Medicamentos , Hipertermia Induzida/instrumentação , Neoplasias Hepáticas/tratamento farmacológico , Ultrassonografia/instrumentação , Adenocarcinoma/secundário , Animais , Bovinos , Análise Custo-Benefício , Sistemas de Liberação de Medicamentos/efeitos adversos , Humanos , Hipertermia Induzida/efeitos adversos , Hipertermia Induzida/métodos , Lipossomos , Fígado , Neoplasias Hepáticas/secundário , Costelas , Temperatura , Ultrassonografia de Intervenção
4.
Artigo em Inglês | MEDLINE | ID: mdl-32845836

RESUMO

Passive acoustic mapping (PAM) techniques have been developed for the purposes of detecting, localizing, and quantifying cavitation activity during therapeutic ultrasound procedures. Implementation with conventional diagnostic ultrasound arrays has allowed planar mapping of bubble acoustic emissions to be overlaid with B-mode anatomical images, with a variety of beamforming approaches providing enhanced resolution at the cost of extended computation times. However, no passive signal processing techniques implemented to date have overcome the fundamental physical limitation of the conventional diagnostic array aperture that results in point spread functions with axial/lateral beamwidth ratios of nearly an order of magnitude. To mitigate this problem, the use of a pair of orthogonally oriented diagnostic arrays was recently proposed, with potential benefits arising from the substantially expanded range of observation angles. This article presents experiments and simulations intended to demonstrate the performance and limitations of the dual-array system concept. The key finding of this study is that source pair resolution of better than 1 mm is now possible in both dimensions of the imaging plane using a pair of 7.5-MHz center frequency conventional arrays at a distance of 7.6cm. With an eye toward accelerating computations for real-time applications, channel count reductions of up to a factor of eight induce negligible performance losses. Modest sensitivities to sound speed and relative array position uncertainties were identified, but if these can be kept on the order of 1% and 1 mm, respectively, then the proposed methods offer the potential for a step improvement in cavitation monitoring capability.


Assuntos
Acústica , Terapia por Ultrassom , Processamento de Sinais Assistido por Computador , Som , Ultrassonografia
5.
Radiology ; 291(1): 232-238, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30644817

RESUMO

Purpose To demonstrate the feasibility and safety of using focused ultrasound planning models to determine the treatment parameters needed to deliver volumetric mild hyperthermia for targeted drug delivery without real-time thermometry. Materials and Methods This study was part of the Targeted Doxorubicin, or TARDOX, phase I prospective trial of focused ultrasound-mediated, hyperthermia-triggered drug delivery to solid liver tumors ( ClinicalTrials.gov identifier NCT02181075). Ten participants (age range, 49-68 years; average age, 60 years; four women) were treated from March 2015 to March 2017 by using a clinically approved focused ultrasound system to release doxorubicin from lyso-thermosensitive liposomes. Ultrasonic heating of target tumors (treated volume: 11-73 cm3 [mean ± standard deviation, 50 cm3 ± 26]) was monitored in six participants by using a minimally invasive temperature sensor; four participants were treated without real-time thermometry. For all participants, CT images were used with a patient-specific hyperthermia model to define focused ultrasound treatment plans. Feasibility was assessed by comparing model-prescribed focused ultrasound powers to those implemented for treatment. Safety was assessed by evaluating MR images and biopsy specimens for evidence of thermal ablation and monitoring adverse events. Results The mean difference between predicted and implemented treatment powers was -0.1 W ± 17.7 (n = 10). No evidence of focused ultrasound-related adverse effects, including thermal ablation, was found. Conclusion In this 10-participant study, the authors confirmed the feasibility of using focused ultrasound-mediated hyperthermia planning models to define treatment parameters that safely enabled targeted, noninvasive drug delivery to liver tumors while monitored with B-mode guidance and without real-time thermometry. Published under a CC BY 4.0 license. Online supplemental material is available for this article. See also the editorial by Dickey and Levi-Polyachenko in this issue.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Doxorrubicina/administração & dosagem , Hipertermia Induzida/métodos , Neoplasias Hepáticas/terapia , Terapia por Ultrassom/métodos , Idoso , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Estudos de Viabilidade , Feminino , Humanos , Lipossomos , Masculino , Pessoa de Meia-Idade , Veículos Farmacêuticos , Estudos Prospectivos
6.
Ultrasound Med Biol ; 45(4): 954-967, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30655109

RESUMO

Ultrasound-induced cavitation has been proposed as a strategy to tackle the challenge of inadequate extravasation, penetration and distribution of therapeutics into tumours. Here, the ability of microbubbles, droplets and solid gas-trapping particles to facilitate mass transport and extravasation of a model therapeutic agent following ultrasound-induced cavitation is investigated. Significant extravasation and penetration depths on the order of millimetres are achieved with all three agents, including the range of pressures and frequencies achievable with existing clinical ultrasound systems. Deeper but highly directional extravasation was achieved with frequencies of 1.6 and 3.3 MHz compared with 0.5 MHz. Increased extravasation was observed with increasing pulse length and exposure time, while an inverse relationship is observed with pulse repetition frequency. No significant cell death or any haemolytic activity in human blood was observed at clinically relevant concentrations for any of the agents. Overall, solid gas-trapping nanoparticles were found to enable the most extensive extravasation for the lowest input acoustic energy, followed by microbubbles and then droplets. The ability of these agents to produce sustained inertial cavitation activity whilst being small enough to follow the drug out of the circulation and into diseased tissue, combined with a good safety profile and the possibility of real-time monitoring, offers considerable potential for enhanced drug delivery of unmodified drugs in oncological and other biomedical applications.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Microbolhas , Nanopartículas/administração & dosagem , Fosfolipídeos/administração & dosagem , Sonicação/métodos , Hexafluoreto de Enxofre/administração & dosagem , Imagens de Fantasmas
7.
Am J Transplant ; 19(1): 178-192, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29758129

RESUMO

Transportable normothermic kidney perfusion for 24 hours or longer could enable viability assessment of marginal grafts, increased organ use, and improved transplant logistics. Eleven clinically declined kidneys were perfused normothermically, with 6 being from donors after brain death (median cold ischemia time 33 ± 36.9 hours) and 5 being from donors after circulatory death (36.2 ± 38.3 hours). Three kidneys were perfused using Ringer's lactate to replace excreted urine volume, and 8 kidneys were perfused using urine recirculation to maintain perfusate volume without fluid replenishment. In all cases, normothermic perfusion either maintained or slightly improved the histopathologically assessed tubular condition, and there was effective urine production in kidneys from both donors after brain death and donors after circulatory death (2367 ± 1798 mL vs 744.4 ± 198.4 mL, respectively; P = .44). Biomarkers, neutrophil gelatinase-associated lipocalin, and kidney injury molecule-1 were successfully detected and quantified in the perfusate. All kidneys with urine recirculation were readily perfused for 24 hours (n = 8) and exhibited physiological perfusate sodium levels (140.7 ± 1.2 mmol/L), while kidneys without urine recirculation (n = 3) achieved a reduced normothermic perfusion time of 7.7 ± 1.5 hours and significantly higher perfusate sodium levels (159.6 ± 4.63 mmol/:, P < .01). Normothermic machine perfusion of human kidneys for 24 hours appears to be feasible, and urine recirculation was found to facilitate the maintenance of perfusate volume and homeostasis.


Assuntos
Transplante de Rim/métodos , Rim/cirurgia , Preservação de Órgãos/métodos , Perfusão , Urina , Idoso , Biomarcadores/urina , Isquemia Fria , Feminino , Glucose/análise , Hemodinâmica , Humanos , Transplante de Rim/instrumentação , Ácido Láctico/análise , Lipocalina-2/análise , Masculino , Pessoa de Meia-Idade , Preservação de Órgãos/instrumentação
8.
Radiol Case Rep ; 13(6): 1259-1266, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30258519

RESUMO

Liver metastasis from breast cancer is associated with poor prognosis and is a major cause of early morbidity and mortality. When liver resection is not feasible, minimally invasive directed therapies are considered to attempt to prolong survival. Selective internal radiation therapy (SIRT) with yttrium-90 microspheres is a liver-directed therapy that can improve local control of liver metastases from colorectal cancer. We present a case of a patient with a ductal breast adenocarcinoma, who developed liver and bone metastasis despite extensive treatment with systemic chemotherapies. Following SIRT to the liver, after an initial response, the patient ultimately progressed in the liver after 7 months. Liver tumor histology obtained 20 months after the SIRT intervention demonstrated the presence of the resin microspheres in situ. This case report demonstrates the long-term control that may be achieved with SIRT to treat liver metastases from breast cancer that is refractory to previous chemotherapies, and the presence of microspheres in situ long-term.

9.
IEEE Trans Med Imaging ; 37(12): 2582-2592, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29994701

RESUMO

Sources of nonlinear acoustic emissions, particularly those associated with cavitation activity, play a key role in the safety and efficacy of current and emerging therapeutic ultrasound applications, such as oncological drug delivery, blood-brain barrier opening, and histotripsy. Passive acoustic mapping (PAM) is the first technique to enable real-time and non-invasive imaging of cavitation activity during therapeutic ultrasound exposure, through the recording and passive beamforming of broadband acoustic emissions using an array of ultrasound detectors. Initial limitations in PAM spatial resolution led to the adoption of optimal data-adaptive beamforming algorithms, such as the robust capon beamformer (RCB), that provide improved interference suppression and calibration error mitigation compared to non-adaptive beamformers. However, such approaches are restricted by the assumption that the recorded signals have a Gaussian distribution. To overcome this limitation and further improve the source resolvability of PAM, we propose a new beamforming approach termed robust beamforming by linear programming (RLPB). Along with the variance, this optimization-based method uses higher-order-statistics of the recorded signals, making no prior assumption on the statistical distribution of the acoustic signals. The RLPB is found via numerical simulations to improve resolvability over time exposure acoustics and RCB. In vitro experimentation yielded improved resolvability with respect to the source-to-array distance on the order of 22% axially and 13% transversely relative to RCB, whilst successfully accounting for array calibration errors. The improved resolution and decreased dependence on accurate calibration of RLPB is expected to facilitate the clinical translation of PAM for diagnostic, including super-resolution, and therapeutic ultrasound applications.


Assuntos
Algoritmos , Terapia por Ultrassom/métodos , Ultrassonografia/métodos , Simulação por Computador , Desenho de Equipamento , Processamento de Sinais Assistido por Computador , Transdutores , Terapia por Ultrassom/instrumentação , Ultrassonografia/instrumentação
10.
Lancet Oncol ; 19(8): 1027-1039, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30001990

RESUMO

BACKGROUND: Previous preclinical research has shown that extracorporeal devices can be used to enhance the delivery and distribution of systemically administered anticancer drugs, resulting in increased intratumoural concentrations. We aimed to assess the safety and feasibility of targeted release and enhanced delivery of doxorubicin to solid tumours from thermosensitive liposomes triggered by mild hyperthermia, induced non-invasively by focused ultrasound. METHODS: We did an open-label, single-centre, phase 1 trial in a single UK hospital. Adult patients (aged ≥18 years) with unresectable and non-ablatable primary or secondary liver tumours of any histological subtype were considered for the study. Patients received a single intravenous infusion (50 mg/m2) of lyso-thermosensitive liposomal doxorubicin (LTLD), followed by extracorporeal focused ultrasound exposure of a single target liver tumour. The trial had two parts: in part I, patients had a real-time thermometry device implanted intratumourally, whereas patients in part II proceeded without thermometry and we used a patient-specific model to predict optimal exposure parameters. We assessed tumour biopsies obtained before and after focused ultrasound exposure for doxorubicin concentration and distribution. The primary endpoint was at least a doubling of total intratumoural doxorubicin concentration in at least half of the patients treated, on an intention-to-treat basis. This study is registered with ClinicalTrials.gov, number NCT02181075, and is now closed to recruitment. FINDINGS: Between March 13, 2015, and March 27, 2017, ten patients were enrolled in the study (six patients in part I and four in part II), and received a dose of LTLD followed by focused ultrasound exposure. The treatment resulted in an average increase of 3·7 times in intratumoural biopsy doxorubicin concentrations, from an estimate of 2·34 µg/g (SD 0·93) immediately after drug infusion to 8·56 µg/g (5·69) after focused ultrasound. Increases of two to ten times were observed in seven (70%) of ten patients, satisfying the primary endpoint. Serious adverse events registered were expected grade 4 transient neutropenia in five patients and prolonged hospital stay due to unexpected grade 1 confusion in one patient. Grade 3-4 adverse events recorded were neutropenia (grade 3 in one patient and grade 4 in five patients), and grade 3 anaemia in one patient. No treatment-related deaths occurred. INTERPRETATION: The combined treatment of LTLD and non-invasive focused ultrasound hyperthermia in this study seemed to be clinically feasible, safe, and able to enhance intratumoural drug delivery, providing targeted chemo-ablative response in human liver tumours that were refractory to standard chemotherapy. FUNDING: Oxford Biomedical Research Centre, National Institute for Health Research.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Doxorrubicina/análogos & derivados , Hipertermia Induzida , Neoplasias Hepáticas/tratamento farmacológico , Ultrassonografia , Idoso , Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Polietilenoglicóis/administração & dosagem
11.
Int J Nanomedicine ; 13: 337-349, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29391793

RESUMO

The treatment of cancer using nanomedicines is limited by the poor penetration of these potentially powerful agents into and throughout solid tumors. Externally controlled mechanical stimuli, such as the generation of cavitation-induced microstreaming using ultrasound (US), can provide a means of improving nanomedicine delivery. Notably, it has been demonstrated that by focusing, monitoring and controlling the US exposure, delivery can be achieved without damage to surrounding tissue or vasculature. However, there is a risk that such stimuli may disrupt the structure and thereby diminish the activity of the delivered drugs, especially complex antibody and viral-based nanomedicines. In this study, we characterize the impact of cavitation on four different agents, doxorubicin (Dox), cetuximab, adenovirus (Ad) and vaccinia virus (VV), representing a scale of sophistication from a simple small-molecule drug to complex biological agents. To achieve tight regulation of the level and duration of cavitation exposure, a "cavitation test rig" was designed and built. The activity of each agent was assessed with and without exposure to a defined cavitation regime which has previously been shown to provide effective and safe delivery of agents to tumors in preclinical studies. The fluorescence profile of Dox remained unchanged after exposure to cavitation, and the efficacy of this drug in killing a cancer cell line remained the same. Similarly, the ability of cetuximab to bind its epidermal growth factor receptor target was not diminished following exposure to cavitation. The encoding of the reporter gene luciferase within the Ad and VV constructs tested here allowed the infectivity of these viruses to be easily quantified. Exposure to cavitation did not impact on the activity of either virus. These data provide compelling evidence that the US parameters used to safely and successfully delivery nanomedicines to tumors in preclinical models do not detrimentally impact on the structure or activity of these nanomedicines.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Ultrassom/métodos , Adenoviridae , Linhagem Celular , Cetuximab/administração & dosagem , Cetuximab/química , Doxorrubicina/administração & dosagem , Vetores Genéticos/administração & dosagem , Vetores Genéticos/química , Humanos , Nanomedicina/métodos , Vaccinia virus
12.
J Ther Ultrasound ; 5: 28, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29118984

RESUMO

BACKGROUND: TARDOX is a Phase I single center study of ultrasound triggered targeted drug delivery in adult oncology patients with incurable liver tumours. This proof of concept study is designed to demonstrate the safety and feasibility of targeted drug release and enhanced delivery of doxorubicin from thermally sensitive liposomes (ThermoDox®) triggered by mild hyperthermia induced by focused ultrasound in liver tumours. A key feature of the study is the direct quantification of the doxorubicin concentration before and after ultrasound exposure from tumour biopsies, using high performance liquid chromatography (HPLC). METHODS/DESIGN: The study is conducted in two parts: Part 1 includes minimally-invasive thermometry via a thermistor or thermocouple implanted through the biopsy co-axial needle core, to confirm ultrasound-mediated hyperthermia, whilst Part 2 is carried out without invasive thermometry, to more closely mimic the ultimately intended clinical implementation of the technique. Whilst under a general anaesthetic, adult patients with incurable confirmed hepatic primary or secondary (metastatic) tumours receive a single cycle of ThermoDox®, immediately followed by ultrasound-mediated hyperthermia in a single target liver tumour. For each patient in Part 1, the HPLC-derived total doxorubicin concentration in the ultrasound-treated tumour is directly compared to the concentration before ultrasound exposure in that same tumour. For each patient in Part 2, as the tumour biopsy taken before ultrasound exposure is not available, the mean of those Part 1 tumour concentrations is used as the comparator. Success of the study requires at least a two-fold increase in the total intratumoural doxorubicin concentration, or final concentrations over 10 µg/g, in at least 50% of all patients receiving the drug, where tissue samples are evaluable by HPLC. Secondary outcome measures evaluate safety and feasibility of the intervention. Radiological response in the target tumour and control liver tumours are analysed as a tertiary outcome measure, in addition to plasma pharmacokinetics, fluorescence microscopy and immunohistochemistry of the biopsy samples. DISCUSSION: If this early phase study can demonstrate that ultrasound-mediated hyperthermia can effectively enhance the delivery and penetration of chemotherapy agents intratumorally, it could enable application of the technique to enhance therapeutic outcomes across a broad range of drug classes to treat solid tumours. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02181075, Edura-CT Identifier: 2014-000514-61.Ethics Number: 14/NE/0124.

13.
Phys Med Biol ; 61(22): 7906-7918, 2016 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-27779121

RESUMO

A significant barrier to successful drug delivery is the limited penetration of nanoscale therapeutics beyond the vasculature. Building on recent in vivo findings in the context of cancer drug delivery, the current study investigates whether modification of nanoparticle drug-carriers to increase their density can be used to enhance their penetration into viscoelastic materials under ultrasound exposure. A computational model is first presented to predict the transport of identically sized nanoparticles of different densities in an ultrasonic field in the presence of an oscillating microbubble, by a combination of primary and secondary acoustic radiation forces, acoustic streaming and microstreaming. Experiments are then described in which near monodisperse (polydispersity index <0.2) nanoparticles of approximate mean diameter 200 nm and densities ranging from 1.01 g cm-3 to 5.58 g cm-3 were fabricated and delivered to a tissue-mimicking material in the presence or absence of a microbubble ultrasound contrast agent, at ultrasound frequencies of 0.5 MHz and 1.6 MHz and a peak negative pressure of 1 MPa. Both the theoretical and experimental results confirm that denser particles exhibit significantly greater ultrasound-mediated transport than their lower density counterparts, indicating that density is a key consideration in the design of nanoscale therapeutics.


Assuntos
Acústica , Meios de Contraste/química , Sistemas de Liberação de Medicamentos/métodos , Microbolhas , Nanopartículas/química , Ultrassonografia/métodos , Simulação por Computador , Humanos
14.
Ultrasound Med Biol ; 42(12): 3022-3036, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27666788

RESUMO

Previous work has indicated the potential of magnetically functionalized microbubbles to localize and enhance cavitation activity under focused ultrasound exposure in vitro. The aim of this study was to investigate magnetic targeting of microbubbles for promotion of cavitation in vivo. Fluorescently labelled magnetic microbubbles were administered intravenously in a murine xenograft model. Cavitation was induced using a 0.5-MHz focused ultrasound transducer at peak negative focal pressures of 1.2-2.0 MPa and monitored in real-time using B-mode imaging and passive acoustic mapping. Magnetic targeting was found to increase the amplitude of the cavitation signal by approximately 50% compared with untargeted bubbles. Post-exposure magnetic resonance imaging indicated deposition of magnetic nanoparticles in tumours. Magnetic targeting was similarly associated with increased fluorescence intensity in the tumours after the experiments. These results suggest that magnetic targeting could potentially be used to improve delivery of cavitation-mediated therapy and that passive acoustic mapping could be used for real-time monitoring of this process.


Assuntos
Meios de Contraste/administração & dosagem , Aumento da Imagem/métodos , Imagem por Ressonância Magnética Intervencionista/métodos , Microbolhas , Neoplasias/terapia , Terapia por Ultrassom/métodos , Acústica , Animais , Modelos Animais de Doenças , Feminino , Fluorescência , Camundongos , Camundongos Endogâmicos BALB C , Fosfolipídeos/administração & dosagem , Hexafluoreto de Enxofre/administração & dosagem
15.
Ultrasound Med Biol ; 42(7): 1612-26, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27056610

RESUMO

Assessment of tumor tissue heterogeneity via ultrasound has recently been suggested as a method for predicting early response to treatment. The ultrasound backscattering characteristics can assist in better understanding the tumor texture by highlighting the local concentration and spatial arrangement of tissue scatterers. However, it is challenging to quantify the various tissue heterogeneities ranging from fine to coarse of the echo envelope peaks in tumor texture. Local parametric fractal features extracted via maximum likelihood estimation from five well-known statistical model families are evaluated for the purpose of ultrasound tissue characterization. The fractal dimension (self-similarity measure) was used to characterize the spatial distribution of scatterers, whereas the lacunarity (sparsity measure) was applied to determine scatterer number density. Performance was assessed based on 608 cross-sectional clinical ultrasound radiofrequency images of liver tumors (230 and 378 representing respondent and non-respondent cases, respectively). Cross-validation via leave-one-tumor-out and with different k-fold methodologies using a Bayesian classifier was employed for validation. The fractal properties of the backscattered echoes based on the Nakagami model (Nkg) and its extend four-parameter Nakagami-generalized inverse Gaussian (NIG) distribution achieved best results-with nearly similar performance-in characterizing liver tumor tissue. The accuracy, sensitivity and specificity of Nkg/NIG were 85.6%/86.3%, 94.0%/96.0% and 73.0%/71.0%, respectively. Other statistical models, such as the Rician, Rayleigh and K-distribution, were found to not be as effective in characterizing subtle changes in tissue texture as an indication of response to treatment. Employing the most relevant and practical statistical model could have potential consequences for the design of an early and effective clinical therapy.


Assuntos
Fractais , Processamento de Imagem Assistida por Computador/métodos , Neoplasias Hepáticas/diagnóstico por imagem , Ultrassonografia/métodos , Ultrassonografia/estatística & dados numéricos , Teorema de Bayes , Humanos , Fígado/diagnóstico por imagem , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
16.
Small ; 11(39): 5305-14, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26296985

RESUMO

Ultrasound-induced bubble activity (cavitation) has been recently shown to actively transport and improve the distribution of therapeutic agents in tumors. However, existing cavitation-promoting agents are micron-sized and cannot sustain cavitation activity over prolonged time periods because they are rapidly destroyed upon ultrasound exposure. A novel ultrasound-responsive single-cavity polymeric nanoparticle (nanocup) capable of trapping and stabilizing gas against dissolution in the bloodstream is reported. Upon ultrasound exposure at frequencies and intensities achievable with existing diagnostic and therapeutic systems, nanocups initiate and sustain readily detectable cavitation activity for at least four times longer than existing microbubble constructs in an in vivo tumor model. As a proof-of-concept of their ability to enhance the delivery of unmodified therapeutics, intravenously injected nanocups are also found to improve the distribution of a freely circulating IgG mouse antibody when the tumor is exposed to ultrasound. Quantification of the delivery distance and concentration of both the nanocups and coadministered model therapeutic in an in vitro flow phantom shows that the ultrasound-propelled nanocups travel further than the model therapeutic, which is itself delivered to hundreds of microns from the vessel wall. Thus nanocups offer considerable potential for enhanced drug delivery and treatment monitoring in oncological and other biomedical applications.


Assuntos
Antineoplásicos/administração & dosagem , Preparações de Ação Retardada/química , Eletroporação/métodos , Nanocápsulas/química , Neoplasias Experimentais/tratamento farmacológico , Sonicação/métodos , Animais , Antineoplásicos/química , Sobrevivência Celular/efeitos dos fármacos , Preparações de Ação Retardada/efeitos da radiação , Relação Dose-Resposta à Radiação , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Movimento (Física) , Nanocápsulas/administração & dosagem , Nanocápsulas/efeitos da radiação , Neoplasias Experimentais/complicações , Neoplasias Experimentais/patologia , Ondas Ultrassônicas
17.
J Acoust Soc Am ; 137(5): 2573-85, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25994690

RESUMO

Passive acoustic mapping (PAM) is a promising imaging method that enables real-time three-dimensional monitoring of ultrasound therapy through the reconstruction of acoustic emissions passively received on an array of ultrasonic sensors. A passive beamforming method is presented that provides greatly improved spatial accuracy over the conventionally used time exposure acoustics (TEA) PAM reconstruction algorithm. Both the Capon beamformer and the robust Capon beamformer (RCB) for PAM are suggested as methods to reduce interference artifacts and improve resolution, which has been one of the experimental issues previously observed with TEA. Simulation results that replicate the experimental artifacts are shown to suggest that bubble interactions are the chief cause. Analysis is provided to show that these multiple bubble artifacts are generally not reduced by TEA, while Capon-based methods are able to reduce the artifacts. This is followed by experimental results from in vitro experiments and in vivo oncolytic viral therapy trials that show improved results in PAM, where RCB is able to more accurately localize the acoustic activity than TEA.

18.
J Control Release ; 210: 10-8, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-25975831

RESUMO

Nanomedicines have provided fresh impetus in the fight against cancer due to their selectivity and power. However, these agents are limited when delivered intravenously due to their rapid clearance from the bloodstream and poor passage from the bloodstream into target tumours. Here we describe a novel stealthing strategy which addresses both these limitations and thereby demonstrate that both the passive and mechanically-mediated tumour accumulation of the model nanomedicine adenovirus (Ad) can be substantially enhanced. In our strategy gold nanoparticles were thoroughly modified with 2kDa polyethyleneglycol (PEG) and then linked to Ad via a single reduction-cleavable 5kDa PEG. The resulting Ad-gold-PEG construct was compared to non-modified Ad or conventionally stealthed Ad-poly[N-(2-hydroxypropyl)methacrylamide] (Ad-PHPMA). Notably, although Ad-gold-PEG was of similar size and surface charge to Ad-PHPMA the increase in density, resulting from the inclusion of the gold nanoparticles, provided a substantial enhancement of ultrasound-mediated transport. In an in vitro tumour mimicking phantom, the level and distance of Ad-gold-PEG transport was shown to be substantially greater than achieved with Ad-PHPMA. In in vivo studies 0.1% of an unmodified Ad dose was shown to accumulate in tumours, whereas over 12% of the injected dose was recovered from the tumours of mice treated with Ad-gold-PEG and ultrasound. Ultimately, a significant increase in anti-tumour efficacy resulted from this strategy. This stealthing and density-increasing technology could ultimately enhance clinical utility of intravenously delivered nanoscale medicines including viruses, liposomes and antibodies.


Assuntos
Adenoviridae/genética , Ouro , Nanopartículas Metálicas , Polietilenoglicóis , Animais , Linhagem Celular Tumoral , Feminino , Ouro/administração & dosagem , Ouro/química , Proteínas de Fluorescência Verde/genética , Humanos , Fígado/metabolismo , Nanopartículas Metálicas/administração & dosagem , Nanopartículas Metálicas/química , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanomedicina , Neoplasias/metabolismo , Neoplasias/terapia , Terapia Viral Oncolítica , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/química , Ácidos Polimetacrílicos/administração & dosagem , Ácidos Polimetacrílicos/química , Ultrassom
19.
J Control Release ; 203: 51-6, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25660073

RESUMO

Tumour hypoxia represents a major challenge in the effective treatment of solid cancerous tumours using conventional approaches. As oxygen is a key substrate for Photo-/Sono-dynamic Therapy (PDT/SDT), hypoxia is also problematic for the treatment of solid tumours using these techniques. The ability to deliver oxygen to the vicinity of the tumour increases its local partial pressure improving the possibility of ROS generation in PDT/SDT. In this manuscript, we investigate the use of oxygen-loaded, lipid-stabilised microbubbles (MBs), decorated with a Rose Bengal sensitiser, for SDT-based treatment of a pancreatic cancer model (BxPc-3) in vitro and in vivo. We directly compare the effectiveness of the oxygen-loaded MBs with sulphur hexafluoride (SF6)-loaded MBs and reveal a significant improvement in therapeutic efficacy. The combination of oxygen-carrying, ultrasound-responsive MBs, with an ultrasound-responsive therapeutic sensitiser, offers the possibility of delivering and activating the MB-sensitiser conjugate at the tumour site in a non-invasive manner, providing enhanced sonodynamic activation at that site.


Assuntos
Hipóxia/terapia , Microbolhas/uso terapêutico , Oxigênio/uso terapêutico , Neoplasias Pancreáticas/terapia , Fármacos Fotossensibilizantes/uso terapêutico , Rosa Bengala/uso terapêutico , Terapia por Ultrassom/métodos , Animais , Sistemas de Liberação de Medicamentos , Humanos , Hipóxia/complicações , Hipóxia/patologia , Masculino , Camundongos Endogâmicos BALB C , Oxigênio/administração & dosagem , Pâncreas/efeitos dos fármacos , Pâncreas/patologia , Neoplasias Pancreáticas/complicações , Neoplasias Pancreáticas/patologia , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/administração & dosagem , Rosa Bengala/administração & dosagem , Células Tumorais Cultivadas
20.
Med Image Anal ; 21(1): 59-71, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25595523

RESUMO

Intensity variations in image texture can provide powerful quantitative information about physical properties of biological tissue. However, tissue patterns can vary according to the utilized imaging system and are intrinsically correlated to the scale of analysis. In the case of ultrasound, the Nakagami distribution is a general model of the ultrasonic backscattering envelope under various scattering conditions and densities where it can be employed for characterizing image texture, but the subtle intra-heterogeneities within a given mass are difficult to capture via this model as it works at a single spatial scale. This paper proposes a locally adaptive 3D multi-resolution Nakagami-based fractal feature descriptor that extends Nakagami-based texture analysis to accommodate subtle speckle spatial frequency tissue intensity variability in volumetric scans. Local textural fractal descriptors - which are invariant to affine intensity changes - are extracted from volumetric patches at different spatial resolutions from voxel lattice-based generated shape and scale Nakagami parameters. Using ultrasound radio-frequency datasets we found that after applying an adaptive fractal decomposition label transfer approach on top of the generated Nakagami voxels, tissue characterization results were superior to the state of art. Experimental results on real 3D ultrasonic pre-clinical and clinical datasets suggest that describing tumor intra-heterogeneity via this descriptor may facilitate improved prediction of therapy response and disease characterization.


Assuntos
Algoritmos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Neoplasias Hepáticas/diagnóstico por imagem , Reconhecimento Automatizado de Padrão/métodos , Ultrassonografia/métodos , Inteligência Artificial , Humanos , Aumento da Imagem/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Processos Estocásticos , Análise de Ondaletas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA