Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(3): e13654, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36895393

RESUMO

Plastic is now a pervasive pollutant in all marine ecosystems. The microplastics and macroplastic debris were studied in three French Mediterranean coastal lagoons (Prevost, Biguglia and Diana lagoons), displaying different environmental characteristics. In addition, biofilm samples were analyzed over the seasons to quantify and identify microalgae communities colonizing macroplastics, and determine potentially harmful microorganisms. Results indicate low but highly variable concentrations of microplastics, in relation to the period and location of sampling. Micro-Raman spectroscopy analyses revealed that the majority of macroplastic debris corresponded to polyethylene (PE) and low-density polyethylene (LDPE), and to a far lesser extent to polypropylene (PP). The observations by Scanning Electron Microscopy of microalgae communities colonizing macroplastic debris demonstrated differences depending on the seasons, with higher amounts in spring and summer, but without any variation between lagoons and polymers. Among the Diatomophyceae, the most dominant genera were Amphora spp., Cocconeis spp., and Navicula spp.. Cyanobacteria and Dinophyceae such as Prorocentrum cordatum, a potentially toxic species, were also found sporadically. The use of Primer specific DNA amplification tools enabled us to detect potentially harmful microorganisms colonizing plastics, such as Alexandrium minutum or Vibrio spp. An additional in situ experiment performed over one year revealed an increase in the diversity of colonizing microalgae in relation to the duration of immersion for the three tested polymers PE, LDPE and polyethylene terephthalates (PET). Vibrio settled durably after two weeks of immersion, whatever the polymer. This study confirms that Mediterranean coastal lagoons are vulnerable to the presence of macroplastic debris that may passively host and transport various species, including some potentially harmful algal and bacterial microorganisms.

2.
Nanomaterials (Basel) ; 10(2)2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-32013039

RESUMO

: Seine river water was used as natural environmental medium to study the ecotoxicological impact of ZnO and CdS nanoparticles and Zn2+ and Cd2+ free ions using Chlorella vulgaris as a biological target. It was demonstrated by viability tests and photosynthetic activity measurements that free Zn2+ (IC50 = 2.7 × 10-4 M) is less toxic than free Cd2+ and ZnO nanoparticles (IC50 = 1.4 × 10-4 M). In the case of cadmium species, free Cd2+ (IC50 = 3.5 × 10-5 M) was similar to CdS nanoparticles (CdS-1: IC50 = 1.9 × 10-5 M and CdS-2: IC50 = 1.9 × 10-5 M), as follows: CdS > Cd2+ > ZnO > Zn2+. Adenosine-5'-triphosphate (ATP) assay and superoxide dismutase (SOD) enzymatic activity confirmed these results. Transmission electron microscopy (TEM), coupled with energy-dispersive X-ray spectroscopy (EDS), confirmed the internalization of CdS-1 nanoparticles after 48 h of contact with Chlorella vulgaris at 10-3 M. With a higher concentration of nanoparticles (10-2 M), ZnO and CdS-2 were also localized inside cells.

3.
Arch Environ Contam Toxicol ; 73(4): 649-658, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28687867

RESUMO

Multi-walled carbon nanotubes (MWCNTs) have potential applications in the industrial, agricultural, pharmaceutical, medical, and environmental remediation fields. However, many uncertainties exist regarding the environmental implications of engineered nanomaterials. This study examined the effect of the MWCNTs on metabolic status and morphology of filamentous green microalgae Klebsormidium flaccidum. Appropriate concentrations of MWCNT (1, 50, and 100 µg mL-1) were added to a microalgal culture in the exponential growth phase and incubated for 24, 48, 72, and 96 h. Exposure to MWCNT led to reductions in algal growth after 48 h and decreased on cell viability for all experimental endpoints except for 1 µg mL-1 at 24 h and 100 µg mL-1 after 72 h. At 100 µg mL-1, MWCNTs induced reactive oxygen species (ROS) production and had an effect on intracellular adenosine triphosphate (ATP) content depending on concentration and time. No photosynthetic activity variation was observed. Observations by scanning transmission electron microscopy showed cell damage. In conclusion, we have demonstrated that exposure to MWCNTs affects cell metabolism and microalgal cell morphology. To our best knowledge, this is the first case in which MWCNTs exhibit adverse effects on filamentous green microalgae K. flaccidum. These results contribute to elucidate the mechanism of MWCNT nanotoxicity in the bioindicator organism of terrestrial and freshwater habitats.


Assuntos
Microalgas/fisiologia , Nanotubos de Carbono/toxicidade , Poluentes Químicos da Água/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
4.
Ecotoxicology ; 24(4): 938-48, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25763523

RESUMO

Studies have been demonstrating that smaller particles can lead to unexpected and diverse ecotoxicological effects when compared to those caused by the bulk material. In this study, the chemical composition, size and shape, state of dispersion, and surface's charge, area and physicochemistry of micro (BT MP) and nano barium titanate (BT NP) were determined. Green algae Chlorella vulgaris grown in Bold's Basal (BB) medium or Seine River water (SRW) was used as biological indicator to assess their aquatic toxicology. Responses such as growth inhibition, cell viability, superoxide dismutase (SOD) activity, adenosine-5-triphosphate (ATP) content and photosynthetic activity were evaluated. Tetragonal BT (~170 nm, 3.24 m(2) g(-1) surface area) and cubic BT (~60 nm, 16.60 m(2) g(-1)) particles were negative, poorly dispersed, and readily aggregated. BT has a statistically significant effect on C. vulgaris growth since the lower concentration tested (1 ppm), what seems to be mediated by induced oxidative stress caused by the particles (increased SOD activity and decreased photosynthetic efficiency and intracellular ATP content). The toxic effects were more pronounced when the algae was grown in SRW. Size does not seem to be an issue influencing the toxicity in BT particles toxicity since micro- and nano-particles produced significant effects on algae growth.


Assuntos
Compostos de Bário/toxicidade , Chlorella vulgaris/efeitos dos fármacos , Chlorella vulgaris/fisiologia , Nanopartículas Metálicas/toxicidade , Titânio/toxicidade , Poluentes Químicos da Água/toxicidade , França
5.
Aquat Toxicol ; 154: 58-70, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24862688

RESUMO

The interaction between live organisms and micro- or nanosized materials has become a current focus in toxicology. As nanosized barium titanate has gained momentum lately in the medical field, the aims of the present work are: (i) to assess BT toxicity and its mechanisms on the aquatic environment, using two photosynthetic organisms (Anabaena flos-aquae, a colonial cyanobacteria, and Euglena gracilis, a flagellated euglenoid); (ii) to study and correlate the physicochemical properties of BT with its toxic profile; (iii) to compare the BT behavior (and Ba(2+) released ions) and the toxic profile in synthetic (Bold's Basal, BB, or Mineral Medium, MM) and natural culture media (Seine River Water, SRW); and (iv) to address whether size (micro, BT MP, or nano, BT NP) is an issue in BT particles toxicity. Responses such as growth inhibition, cell viability, superoxide dismutase (SOD) activity, adenosine-5-triphosphate (ATP) content and photosynthetic efficiency were evaluated. The main conclusions are: (i) BT have statistically significant toxic effects on E. gracilis growth and viability even in small concentrations (1µgmL(-1)), for both media and since the first 24 h; on the contrary of on A. flos-aquae, to whom the effects were noticeable only for the higher concentrations (after 96 h: ≥75 µg mL(-1) for BT NP and =100 µg mL(-1) for BT MP, in BB; and ≥75 µg mL(-1) for both materials in SRW), in spite of the viability being affected in all concentrations; (ii) the BT behaviors in synthetic and natural culture media were slightly different, being the toxic effects more pronounced when grown in SRW - in this case, a worse physiological state of the organisms in SRW can occur and account for the lower resistance, probably linked to a paucity of nutrients or even a synergistic effect with a contaminant from the river; and (iii) the effects seem to be mediated by induced stress without a direct contact in A. flos-aquae and by direct endocytosis in E. gracilis, but in both organisms the contact with both BT MP and BT NP increased SOD activity and decreased photosynthetic efficiency and intracellular ATP content; and (iv) size does not seem to be an issue in BT particles toxicity since micro- and nano-particles produced significant toxic for the model-organisms.


Assuntos
Compostos de Bário/toxicidade , Dolichospermum flosaquae/efeitos dos fármacos , Euglena gracilis/efeitos dos fármacos , Titânio/toxicidade , Poluentes Químicos da Água/toxicidade , Trifosfato de Adenosina/metabolismo , Dolichospermum flosaquae/enzimologia , Dolichospermum flosaquae/ultraestrutura , Ecotoxicologia , Ativação Enzimática/efeitos dos fármacos , Euglena gracilis/enzimologia , Euglena gracilis/ultraestrutura , Água Doce/química , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Fotossíntese/efeitos dos fármacos , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA