Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Curr Microbiol ; 81(5): 113, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472456

RESUMO

During this coronavirus pandemic, when a lot of people are already severely afflicted with SARS-CoV-19, the dispersion of black fungus is making it worse, especially in the Indian subcontinent. Considering this situation, the idea for an in silico study to identify the potential inhibitor against black fungal infection is envisioned and computational analysis has been conducted with isatin derivatives that exhibit considerable antifungal activity. Through this in silico study, several pharmacokinetics properties like absorption, distribution, metabolism, excretion, and toxicity (ADMET) are estimated for various derivatives. Lipinski rules have been used to observe the drug likeliness property, and to study the electronic properties of the molecules, quantum mechanism was analyzed using the density functional theory (DFT). After applying molecular docking of the isatin derivatives with sterol 14-alpha demethylase enzyme of black fungus, a far higher docking affinity score has been observed for the isatin sulfonamide-34 (derivative 1) than the standard fluconazole. Lastly, molecular dynamic (MD) simulation has been performed for 100 ns to examine the stability of the proposed drug complex by estimating Root Mean Square Deviation (RMSD), Radius of gyration (Rg), Solvent accessible surface area (SASA), Root Mean Square Fluctuation (RMSF), as well as hydrogen bond. Listed ligands have precisely satisfied every pharmacokinetics requirement for a qualified drug candidate and they are non-toxic, non-carcinogenic, and have high stability. This natural molecule known as isatin derivative 1 has shown the potential of being a drug for fungal treatment. However, the impact of the chemicals on living cells requires more investigation and research.


Assuntos
Infecções por Coronavirus , Isatina , Humanos , Simulação de Acoplamento Molecular , Antifúngicos , Fungos
2.
Fundam Clin Pharmacol ; 38(1): 60-71, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37497790

RESUMO

BACKGROUND: The bacterium Staphylococcus aureus has stood out for presenting a high adaptability, acquiring resistance to multiple drugs. The search for natural or synthetic compounds with antibacterial properties capable of reversing the resistance of S. aureus is the main challenge to be overcome today. Natural products such as chalcones are substances present in the secondary metabolism of plants, presenting important biological activities such as antitumor, antidiabetic, and antimicrobial activity. OBJECTIVES: In this context, the aim of this work was to synthesize the chalcone (2E)-1-(3'-aminophenyl)-3-(4-dimethylaminophenyl)-prop-2-en-1-one with nomenclature CMADMA, confirm its structure by nuclear magnetic resonance (NMR), and evaluate its antibacterial properties. METHODS: The synthesis methodology used was that of Claisen-Schmidt, and spectroscopic characterization was performed by NMR. For microbiological assays, the broth microdilution methodology was adopted in order to analyze the antibacterial potential of chalcones and to analyze their ability to act as a possible inhibitor of ß-lactamase and efflux pump resistance mechanisms, present in S. aureus strain K4100. RESULTS: The results obtained show that CMADMA does not show direct antibacterial activity, expressing a MIC of ≥1024 µg/mL, or on the enzymatic mechanism of ß-lactamase; however, when associated with ethidium bromide in efflux pump inhibition assays, CMADMA showed promising activity by reducing the MIC of the bromide from 64 to 32 µg/mL. CONCLUSION: We conclude that the chalcone synthesized in this study is a promising substance to combat bacterial resistance, possibly acting in the inhibition of the QacC efflux pump present in S. aureus strain K4100, as evidenced by the reduction in the MIC of ethidium bromide.


Assuntos
Chalcona , Chalconas , Staphylococcus aureus , Chalcona/farmacologia , Chalcona/metabolismo , Chalconas/farmacologia , Etídio/metabolismo , Etídio/farmacologia , beta-Lactamases/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana
3.
Pharmaceutics ; 15(10)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37896161

RESUMO

Valencene and nootkatone are aromatic sesquiterpenes with known biological activities, such as antimicrobial, antioxidant, anti-inflammatory, and antitumor. Given the evidence that encapsulation into nanosystems, such as liposomes, could improve the properties of several compounds, the present study aimed to evaluate the activity of these sesquiterpenes in their isolated state or in liposomal formulations against strains of Staphylococcus aureus carrying efflux pumps. The broth microdilution method evaluated the antibiotic-enhancing activity associated with antibiotics and ethidium bromide (EtBr). The minimum inhibitory concentration was assessed in strains of S. aureus 1199B, IS-58, and RN4220, which carry the efflux proteins NorA, Tet(K), and MsrA. In tests with strain 1199B, valencene reduced the MIC of norfloxacin and EtBr by 50%, while the liposomal formulation of this compound did not show a significant effect. Regarding the strain IS-58, valencene, and its nanoformulation reduced norfloxacin MIC by 60.3% and 50%, respectively. In the non-liposomal form, the sesquiterpene reduced the MIC of EtBr by 90%. Against the RN4220 strain, valencene reduced the MIC of the antibiotic and EtBr by 99% and 93.7%, respectively. Nootkatone and its nanoformulation showed significant activity against the 1199B strain, reducing the EtBr MIC by 21.9%. Against the IS-58 strain, isolated nootkatone reduced the EtBr MIC by 20%. The results indicate that valencene and nootkatone potentiate the action of antibiotics and efflux inhibitors in strains carrying NorA, Tet(K), and MsrA proteins, which suggests that these sesquiterpenes act as efflux pump inhibitors in S. aureus. Therefore, further studies are needed to assess the impact of incorporation into liposomes on the activity of these compounds in vivo.

4.
Chem Biodivers ; 20(12): e202300906, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37795905

RESUMO

Exacerbated inflammatory responses to harmful stimuli can lead to significant pain, edema, and other complications that require pharmacological intervention. Abietic acid (AA) is a diterpene found as a significant constituent in pine species, and evidence has identified its biological potential. The present study aimed to evaluate abietic acid's antiedematogenic and anti-inflammatory activity in mice. Swiss mice (Mus musculus) weighing 20-30 g were treated with AA at 50, 100, and 200 mg/kg. The central nervous system (CNS) effects were evaluated using open-field and rotarod assays. The antinociceptive and anti-inflammatory screening was assessed by the acetic acid and formalin tests. The antiedematogenic activity was investigated by measuring paw edema induced by carrageenan, dextran, histamine, arachidonic acid, and prostaglandin, in addition to using a granuloma model. The oral administration of abietic acid (200 mg/Kg) showed no evidence of CNS effects. The compound also exhibited significant antiedematogenic and anti-inflammatory activities in the carrageenan and dextran models, mostly related to the inhibition of myeloperoxidase (MOP) activity and histamine action and, to a lesser extent, the inhibition of eicosanoid-dependent pathways. In the granuloma model, abietic acid's effect was less expressive than in the acute models investigated in this study. In conclusion, abietic acid has analgesic and antiedematogenic activities related to anti-inflammatory mechanisms.


Assuntos
Dextranos , Histamina , Camundongos , Animais , Carragenina/efeitos adversos , Dextranos/efeitos adversos , Histamina/efeitos adversos , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Extratos Vegetais/farmacologia , Edema/induzido quimicamente , Edema/tratamento farmacológico , Granuloma/tratamento farmacológico
5.
J Environ Manage ; 345: 118719, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37536127

RESUMO

The use of pesticides is intense in agriculture and has caused contamination in water, air and soil. This fact led to the need to study strategies that can minimize the effects that these pesticides have caused to the environment. In this context, biochar appears, as a type of material that has the ability to remove chemical substances, and because they can be activated with different chemical agents, they are extremely effective in the adsorption of toxic substances. Therefore, the aim of the study was to evaluate the use of biochar as a bioadsorbent for pesticides. This is a systematic review with meta-analysis and meta-regression, as the PRISMA protocol recommendations. Studies from the last 20 years were included, with at least the abstract available and considering preferentially experimental studies. Qualitative studies or studies with high risk of bias, other reviews and duplicates were excluded. The variables analyzed were the presence of factors that prove the effectiveness or not of pesticide adsorption. Studies with a superficial approach or those that do not show positivity or negativity in relation to the outcome were excluded. The search was conducted on the sources: Scopus, Web of Science electronic databases, PubMed (of the US National Library of Medicine, National Institutes of Health) and ScienceDirect (Elsevier). For better investigative determination, the data were searched separately. The descriptors used for the search were the following: Agrochemicals AND Activated Carbon AND Adsorption. Initially, 2431 references were found, from which 14 were selected to compose the meta-analysis review. With the joint analysis of the data, it was possible to verify using the random model (since the studies assess different contexts) that there is a proportion of effectiveness of the intervention of 81% (with a 95% confidence interval), ranging from 75 to 88%, which is represented by the meta-analysis diamond that is the final result of the statistical analysis. Biochar is effective in removing impurities, even including features such as low cost. There is a considerable lack of studies on the topic of pesticide adsorption with the use of biochar. The studies approach a very heterogeneous perspective on the subject, exposing different contexts.


Assuntos
Praguicidas , Carvão Vegetal , Solo , Agricultura
6.
Biomed Pharmacother ; 166: 115249, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37597323

RESUMO

Edema is one of the obvious indicators of inflammation and a crucial factor to take into account when assessing a substance's capacity to reduce inflammation. We aimed to evaluate the antiedematogenic and anti-inflammatory profile of the hydroethanolic barks extract of Ximenia americana (HEXA). The possible antiedematogenic and anti-inflammatory effect of EHXA (50, 100 mg/kg and 250 mg/kg v.o) was evaluated using the paw edema induced by carrageenan, zymosan, dextran, CFA and by different agents inflammatory (serotonin, histamine, arachidonic acid and PGE2), and pleurisy model induced by carrageenan and its action on IL-1ß and TNF-α levels was also evaluated. HEXA demonstrated a significant antiedematogenic effect at concentrations of 50, 100 and 250 mg/kg on paw edema induced by carrageenan, zymosan and dextran. However, the concentration of 50 mg/kg as standard, demonstrating the effect in the subchronic model, induced CFA with inhibition of 59.06 %. In models of histamine-induced paw edema, HEXA showed inhibition of - 30 min: 40.49 %, 60 min: 44.70 % and 90 min: 48.98 %; serotonin inhibition - 30 min: 57.09 %, 60 min: 66.04 % and 90 min: 61.79 %; arachidonic acid inhibition - 15 min: 36.54 %, 30 min: 51.10 %, 45 min: 50.32 % and 60 min: 76.17 %; and PGE2 inhibition - 15 min: 67.78 %, 30 min: 62.30 %, 45 min: 54.25 % and 60 min: 47.92 %. HEXA significantly reduced (p < 0.01) leukocyte migration in the pleurisy model and reduced TNF-α and IL-1ß levels in pleural lavage (p < 0.0001). The results showed that HEXA has the potential to have an antiedematogenic impact in both acute and chronic inflammation processes, with a putative mode of action including the suppression or regulation of inflammatory mediators.


Assuntos
Olacaceae , Pleurisia , Ácido Araquidônico , Carragenina , Dextranos , Histamina , Casca de Planta , Serotonina , Fator de Necrose Tumoral alfa , Zimosan , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Pleurisia/induzido quimicamente , Pleurisia/tratamento farmacológico , Dinoprostona , Modelos Teóricos , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
7.
Plants (Basel) ; 12(12)2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37376002

RESUMO

Antimicrobial resistance has become a growing public health concern in recent decades, demanding a search for new effective treatments. Therefore, this study aimed to elucidate the phytochemical composition and evaluate the antibacterial activity of the essential oil obtained from the fruits of Piper tuberculatum Jacq. (EOPT) against strains carrying different mechanisms of antibiotic resistance. Phytochemical analysis was performed using gas chromatography-mass spectrometry (GC/MS). The antibacterial activity of EOPT and its ability to inhibit antibiotic resistance was evaluated through the broth microdilution method. The GC-MS analysis identified 99.59% of the constituents, with ß-pinene (31.51%), α-pinene (28.38%), and ß-cis-ocimene (20.22%) being identified as major constituents. The minimum inhibitory concentration (MIC) of EOPT was determined to assess its antibacterial activity against multidrug-resistant strains of Staphylococcus aureus (IS-58, 1199B, K2068, and K4100). The compound showed a MIC of ≥ 1024 µg/mL, suggesting a lack of intrinsic antibacterial activity. However, when the EOPT was associated with antibiotics and EtBr, a significant decrease in antibiotic resistance was observed, indicating the modulation of efflux pump activity. This evidence was corroborated with the observation of increased fluorescent light emission by the bacterial strains, indicating the involvement of the NorA and MepA efflux pumps. Additionally, the significant potentiation of ampicillin activity against the S. aureus strain K4414 suggests the ß-lactamase inhibitory activity of EOPT. These results suggest that the essential oil from P. tuberculatum fruits has antibiotic-enhancing properties, with a mechanism involving the inhibition of efflux pumps and ß-lactamase in MDR S. aureus strains. These findings provide new perspectives on the potential use of EOPT against antibiotic resistance and highlight the importance of Piper species as sources of bioactive compounds with promising therapeutic activities against MDR bacteria. Nevertheless, further preclinical (in vivo) studies remain necessary to confirm these in vitro-observed results.

8.
Plants (Basel) ; 12(8)2023 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37111810

RESUMO

Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus are the primary bacteria that cause clinical infections, such as urinary and intestinal infections, pneumonia, endocarditis, and sepsis. Bacterial resistance is an innate natural occurrence in microorganisms, resulting from mutations or the lateral exchange of genetic material. This serves as evidence for the association between drug consumption and pathogen resistance. Evidence has demonstrated that the association between conventional antibiotics and natural products is a promising pharmacological strategy to overcome resistance mechanisms. Considering the large body of research demonstrating the significant antimicrobial activities of Schinus terebinthifolius Raddi, the present study aimed to evaluate the chemical composition and antibiotic-enhancing effects of Schinus terebinthifolius Raddi essential oil (STEO) against the standard and multidrug-resistant strains of Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The STEO was extracted by hydrodistillation using a Clevenger-type vacuum rotary evaporator. The Minimum Inhibitory Concentration (MIC) of the STEO was assessed by the microdilution method to evaluate the antibacterial activity. The antibiotic-enhancing activity of the essential oil was assessed by determining the MIC of antibiotics in the presence of a sub-inhibitory concentration (MIC/8) of the natural product. The GC-MS analysis revealed alpha-pinene (24.3%), gamma-muurolene (16.6%), and myrcene (13.7%) as major constituents of the STEO. The STEO potentiated the enhanced antibacterial activity of norfloxacin and gentamicin against all the strains and increased the action of penicillin against the Gram-negative strains. Therefore, it is concluded that although the STEO does not exhibit clinically effective antibacterial activity, its association with conventional antibiotics results in enhanced antibiotic activity.

9.
Antioxidants (Basel) ; 12(3)2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36978825

RESUMO

Mixture design is a statistical tool used to obtain the maximum desired effect using the minimum number of experiments. The aim of the presented work was the optimization of the composition of a mixture of essential oils from basil, citronella, cedarwood and thyme using simplex-lattice mixture design method. The optimized parameter was an antioxidant activity measured in DPPH assay and expressed as effective concentration (EC50). The test results showed an interesting synergy between the components of essential oils. The prepared binary and quaternary mixtures were characterized by higher activity than simple average activity. The designed mixture with approximated highest antioxidant activity was composed of: 54.4% citronella essential oil, 33.0% thyme essential oil, 9.2% cedarwood essential oil and 3.4% basil essential oil and its approximated activity was in agreement with experimental values. This work confirmed that it is possible to approximate the best antioxidant composition of four essential oils used as a potential medicinal and food ingredient.

10.
Curr Res Toxicol ; 4: 100103, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36970244

RESUMO

Medicinal plants have been used for many years by communities to treat illnesses. The need for scientific proof of these vegetable's curative effects is as necessary as the proof of the inexistence of toxicity related to the use of extracts with therapeutic potential. Annona squamosa L. (Annonaceae), popularly known as "pinha", "ata" or "fruta do conde", has been used in traditional medicine for its analgesic and antitumor activities. The toxic effects attributed to this plant have also been explored as a pesticide and an insecticide. The aim of the present study was to investigate the toxicity of the methanolic extract of A. squamosa seeds and pulp against human erythrocytes. Blood samples were treated with methanolic extract at different concentrations, osmotic fragility was determined using saline tension assays and morphological analyzes were performed using optical microscopy. The extracts were analyzed using high performance liquid chromatography with diode array detection (HPLC-DAD) for phenolic quantification. The seed's methanolic extract showed toxicity above 50% from a concentration of 100 µg/mL, while also presenting echinocytes in the morphological analysis. The pulp's methanolic extract did not show toxicity to red blood cells or morphological changes at the concentrations tested. HPLC-DAD analysis revealed the presence of caffeic acid in the seed extract and gallic acid in the pulp extract. The seed's methanolic extract is toxic and the pulp's methanolic extract showed no toxicity against human erythrocytes.

11.
Biology (Basel) ; 11(12)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36552343

RESUMO

Artocarpus heterophyllus (jackfruit) is an evergreen tree distributed in tropical regions and is among the most studied species of the genus Artocarpus. The jackfruit almond has been highlighted in relation to phytochemical studies, biological properties, and application in the development of food products. This study aimed to analyze jackfruit fixed oil regarding chemical components, antibacterial property alone, and in association with antibiotics against standard and MDR bacteria strains. In the analysis of the oil by gas chromatography coupled to a flame ionization detector (GC-FID), a high content of saturated fatty acids (78.51%) was identified in relation to unsaturated fatty acids (17.07%). The main fatty acids identified were lauric acid (43.01%), myristic acid (11.10%), palmitic acid (6.95%), and oleic acid (15.32%). In the antibacterial analysis, broth microdilution assays were used. The oil presented minimum inhibitory concentration (MIC) ≥ 1024 µg/mL in antibacterial analysis for standard and MDR bacterial strains. The oil showed synergistic effects in the association with gentamicin, ofloxacin, and penicillin against MDR strains, with significant reductions in the MIC of antibiotics. The results suggest that the fixed oil of A. heterophyllus has fatty acids with the potential to synergistically modify antibiotic activity.

12.
Pharmaceuticals (Basel) ; 15(10)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36297389

RESUMO

Microbial resistance has become a worrying problem in recent decades after the abusive use of antibiotics causing the selection of resistant microorganisms. In order to circumvent such resistance, researchers have invested efforts in the search for promising natural substances, such as essential oils. Thus, the objective of this work was to determine the chemical composition of the essential oil of Acritopappus confertus leaves, to evaluate its intrinsic effect and its effects in combination with drugs against pathogenic fungi and bacteria, in addition to verifying the inhibition of virulence in Candida strains. To this end, the oil was verified by gas chromatography coupled with mass spectrometry (GC/MS). Candida strains were used for antifungal assays by means of the serial microdilution technique, in order to determine the average inhibitory concentration (IC50), and for the modification assays, sub-inhibitory concentrations (MIC/8) were used. Finally, the natural product's ability to inhibit the formation of filamentous structures was evaluated. In antibacterial tests, the MIC of the oil against strains of Staphylococcus aureus and Escherichia coli and its modifying effects in association with gentamicin, erythromycin, and norfloxacin were determined. The major constituent of the essential oil was the monoterpene myrcene (54.71%). The results show that the essential oil has an antifungal effect, with C. albicans strains being the most susceptible. Furthermore, the oil can potentiate the effect of fluconazole against strains of C. tropicalis and C. albicans. Regarding its effect on micromorphology, the oil was also able to inhibit the filaments in all strains. In combination with antibiotics, the oil potentiated the drug's action by reducing the MIC against E. coli and S. aureus. It can be concluded that the essential oil of A. confertus has potential against pathogenic fungi and bacteria, making it a target for the development of an antimicrobial drug.

13.
Molecules ; 27(19)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36234949

RESUMO

Studies show that more consumers are using natural health products in the modern world. We have noticed a growing demand in markets and the professional community for mouthwashes that contain natural compounds. The objective of this study was to assess the chemical characterization and microbiological potential of the essential oil Piper arboreum (EOPa) to provide data to enable the development of a low-cost mouthwash. The evaluation of the antibacterial and bacterial resistance modulating activity was performed by the microdilution method to determine the minimum inhibitory concentration. The chemical components were characterized by gas chromatography coupled with mass spectrometry, which identified 20 chemical constituents, with caryophyllene oxide being one of the major compounds. The EOPa showed an MIC ≥ 1024 µg/mL for all bacterial strains used in the tests. When evaluating the modulating activity of EOPa combined with chlorhexidine, mouthwash and antibiotics against the bacterial resistance, the oil limited synergistic activity between the MIC of the products tested in combination (37% to 87.5%). Therefore, we recommend expanding the tests with greater variation in the EOPa concentration and the products used, as well as toxicity assessments and in vivo testing, with the purpose of the development of a possible low-cost mouthwash base that is accessible to the most vulnerable populations.


Assuntos
Óleos Voláteis , Piper , Antibacterianos/química , Antibacterianos/farmacologia , Clorexidina/farmacologia , Cromatografia Gasosa-Espectrometria de Massas , Testes de Sensibilidade Microbiana , Antissépticos Bucais/farmacologia , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Piper/química
14.
Molecules ; 27(18)2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36144647

RESUMO

Commercialized mouthwashes are generally expensive for the most financially vulnerable populations. Thus, several studies evaluate the antimicrobial potential of herbal products, such as essential oils, to reduce the activity of microorganisms in the mouth. The objective of this research was to carry out the chemical characterization and antibacterial activity of the essential oil of Piper mosenii (EOPm), providing data that enable the development of a low-cost mouthwash formulation aimed at vulnerable communities. The analysis of the antibacterial potential and modulator of bacterial resistance was verified by the microdilution method to determine the minimum inhibitory concentration-MIC. The chemical components were characterized by gas chromatography coupled to mass spectrometry, where 23 chemical constituents were detected, with α-pinene, being the major compound. The EOPm showed a MIC ≥ 1024 µg/mL for all bacterial strains used in the tests. When the EOPm modulating activity was evaluated together with chlorhexidine, mouthwash and antibiotics against bacterial resistance, the oil showed a significant synergistic effect, reducing the MIC of the products tested in combination, in percentages between 20.6% to 96.3%. Therefore, it is recommended to expand the tests with greater variation of EOPm concentration and the products used in this research, in addition to the evaluation of toxicity and in vivo tests, seeking the development of a possible formulation of mouthwash accessible to the vulnerable population.


Assuntos
Anti-Infecciosos , Óleos Voláteis , Piper , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Clorexidina , Cromatografia Gasosa-Espectrometria de Massas/métodos , Testes de Sensibilidade Microbiana , Antissépticos Bucais , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Piper/química
15.
Front Cell Dev Biol ; 10: 984311, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36158215

RESUMO

Cancer is still one of the world's deadliest health concerns. As per latest statistics, lung, breast, liver, prostate, and cervical cancers are reported topmost worldwide. Although chemotherapy is most widely used methodology to treat cancer, poor pharmacokinetic parameters of anticancer drugs render them less effective. Novel nano-drug delivery systems have the caliber to improve the solubility and biocompatibility of various such chemical compounds. In this regard, cyclodextrins (CD), a group of natural nano-oligosaccharide possessing unique physicochemical characteristics has been highly exploited for drug delivery and other pharmaceutical purposes. Their cup-like structure and amphiphilic nature allows better accumulation of drugs, improved solubility, and stability, whereas CDs supramolecular chemical compatibility renders it to be highly receptive to various kinds of functionalization. Therefore combining physical, chemical, and bio-engineering approaches at nanoscale to specifically target the tumor cells can help in maximizing the tumor damage without harming non-malignant cells. Numerous combinations of CD nanocomposites were developed over the years, which employed photodynamic, photothermal therapy, chemotherapy, and hyperthermia methods, particularly targeting cancer cells. In this review, we discuss the vivid roles of cyclodextrin nanocomposites developed for the treatment and theranostics of most important cancers to highlight its clinical significance and potential as a medical tool.

16.
Molecules ; 27(9)2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35566105

RESUMO

Cymbopogon winterianus, known as "citronella grass", is an important aromatic and medicinal tropical herbaceous plant. The essential oil of C. winterianus (EOCw) is popularly used to play an important role in improving human health due to its potential as a bioactive component. The present study aimed to identify the components of the essential oil of C. winterianus and verify its leishmanicidal and trypanocidal potential, as well as the cytotoxicity in mammalian cells, in vitro. The EOCw had geraniol (42.13%), citronellal (17.31%), and citronellol (16.91%) as major constituents. The essential oil only exhibited significant cytotoxicity in mammalian fibroblasts at concentrations greater than 250 µg/mL, while regarding antipromastigote and antiepimastigote activities, they presented values considered clinically relevant, since both had LC50 < 62.5 µg/mL. It can be concluded that this is a pioneer study on the potential of the essential oil of C. winterianus and its use against the parasites T. cruzi and L. brasiliensis, and its importance is also based on this fact. Additionally, according to the results, C. winterianus was effective in presenting values of clinical relevance and low toxicity and, therefore, an indicator of popular use.


Assuntos
Anti-Infecciosos , Cymbopogon , Óleos Voláteis , Plantas Medicinais , Animais , Antiparasitários/farmacologia , Cromatografia Gasosa , Cymbopogon/química , Humanos , Mamíferos , Óleos Voláteis/química , Óleos Voláteis/farmacologia
17.
Molecules ; 27(10)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35630757

RESUMO

One of the main global problems that affect human health is the development of bacterial resistance to different drugs. As a result, the growing number of multidrug-resistant pathogens has contributed to an increase in resistant infections and represents a public health problem. The present work seeks to investigate the chemical composition and antibacterial activity of the essential oil of Syzygium cumini leaves. To identify its chemical composition, gas chromatography coupled to mass spectrometry was used. The antibacterial activity test was performed with the standard strains Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 25853 and Staphylococcus aureus ATCC 25923 and multidrug-resistant clinical isolates E. coli 06, P. aeruginosa 24 and S. aureus 10. The minimum inhibitory concentration (MIC) was determined by serial microdilution as well as the verification of the modulating effect of the antibiotic effect. In this test, the oil was used in a subinhibitory concentration. The test reading was performed after 24 h of incubation at 37 °C. The results show that the major chemical constituent is α-pinene (53.21%). The oil showed moderate activity against E. coli ATCC 25922, with the MIC of 512 µg/mL; there was no activity against the other strains. The oil potentiated the effect of antibiotics demonstrating possible synergism when associated with gentamicin, erythromycin and norfloxacin against E. coli 06 and S. aureus 10.


Assuntos
Óleos Voláteis , Syzygium , Antibacterianos/química , Antibacterianos/farmacologia , Escherichia coli , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Compostos Fitoquímicos/farmacologia , Pseudomonas aeruginosa , Staphylococcus aureus
18.
Biomed Pharmacother ; 150: 112938, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35413602

RESUMO

Osteoarthritis (OA) is a degenerative joint disease that occurs when there is a change in the mechanical and biological properties of the articular cartilage and the subchondral bone; The condition is more prevalent in women than in men. Pequi oil (PO), which is extracted from the fruits of the pequi tree (Caryocar coriaceum Wittm), is widely used in traditional medicine in the Brazilian northeast for the management of inflammation and joint pain. The aim of this study was to develop a pharmaceutical formulation containing Carbopol® hydrogel nanoencapsulated with pequi pulp fixed oil (PeONC) and evaluate its therapeutic effect on functionality and pain in women with knee osteoarthritis. The study was divided into two stages: Stage 1 - preparation and physico-chemical characterization of the pharmaceutical formulation containing PeONC, cell viability assays and skin irritability testing. Step 2 - A double-blind randomized clinical trial evaluating knee symptoms, quality of life, pressure pain, function, muscle strength and range of motion. The nanoformulation was in a gel form, with a particle size of 209.5 ± 1.06 nm, a pH of 6.23 ± 0.45, a zeta potential of - 23.1 ± 0.4 mV, a polydispersity index of 0.137 ± 0.52, and containing nanocapsules with a spherical shape a polymeric wall and an oily nucleus. The gel showed no cytotoxicity and was not irritating to human skin. The treatment with PeONC increased the strength of the knee flexor and extensor muscles and the total motion range of the knee. In addition, the treatment reduced knee instability, pain, swelling, and locking; There was also an improvement in some items of the SF-36 quality of life questionnaire such as in respect of functional capacity and social aspects. In conclusion, PeONC was found to be a stable, safe formulation with no toxicity in respect of topical use in humans. Additionally, the treatment produced an increase in muscle strength and functionality that was associated with reduced knee symptoms and improved quality of life. Our findings showed that in a group of women treated with PeONC mitigated the symptoms of knee osteoarthritis.


Assuntos
Ericales , Malpighiales , Osteoartrite do Joelho , Feminino , Humanos , Masculino , Osteoartrite do Joelho/tratamento farmacológico , Dor/tratamento farmacológico , Óleos de Plantas/farmacologia , Óleos de Plantas/uso terapêutico , Qualidade de Vida
19.
Molecules ; 27(7)2022 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-35408565

RESUMO

Weeds are an important source of natural products; with promising biological activity. This study investigated the anti-kinetoplastida potential (in vitro) to evaluate the cytotoxicity (in vitro) and antioxidant capacity of the essential oil of Rhaphiodon echinus (EORe), which is an infesting plant species. The essential oil was analyzed by GC/MS. The antioxidant capacity was evaluated by reduction of the DPPH radical and Fe3+ ion. The clone Trypanosoma cruzi CL-B5 was used to search for anti-epimastigote activity. Antileishmanial activity was determined using promastigotes of Leishmania braziliensis (MHOM/CW/88/UA301). NCTC 929 fibroblasts were used for the cytotoxicity test. The results showed that the main constituent of the essential oil was γ-elemene. No relevant effect was observed concerning the ability to reduce the DPPH radical; only at the concentration of 480 µg/mL did the essential oil demonstrate a high reduction of Fe3+ power. The oil was active against L. brasiliensis promastigotes; but not against the epimastigote form of T. cruzi. Cytotoxicity for mammalian cells was low at the active concentration capable of killing more than 70% of promastigote forms. The results revealed that the essential oil of R. echinus showed activity against L. brasiliensis; positioning itself as a promising agent for antileishmanial therapies.


Assuntos
Antiprotozoários , Doença de Chagas , Lamiaceae , Leishmaniose Mucocutânea , Óleos Voláteis , Trypanosoma cruzi , Animais , Antioxidantes/farmacologia , Antiprotozoários/farmacologia , Doença de Chagas/tratamento farmacológico , Mamíferos , Óleos Voláteis/farmacologia
20.
J Infect Public Health ; 15(3): 373-377, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34656506

RESUMO

In a recent study, our research group demonstrated that the essential oil of Ocotea odorifera (EOOO) and its major compound safrole potentiated the action fluoroquinolones, modulating bacterial resistance possibly due to direct inhibition of efflux pumps. Thus, in the present study, we investigated whether these treatments could enhance the activity of gentamicin and erythromycin against multidrug-resistant (MDR) bacteria. The EOOO was extracted by hydrodistillation, and the phytochemical analysis was performed by gas chromatography coupled to mass spectrometry (GC-MS). The antibiotic-enhancing effect of the EOOO and safrole against MDR strains of Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa was analyzed by the broth microdilution method. The chemical analysis confirmed the presence of safrole as a major component among the 16 compounds identified in the EOOO. Both the essential oil and the isolated compound showed clinically relevant antibacterial activities against S. aureus. Regarding the modulation of antibiotic resistance, the EOOO was found to enhance the activity of erythromycin against the strains of P. aeruginosa and S. aureus, as well as improving the action of gentamicin against S. aureus. On the other hand, safrole potentiated the activity of gentamicin against the S. aureus strain alone. It is concluded, therefore, that the EOOO and safrole can enhance the activity of macrolides and aminoglycosides, and as such are useful in the development of therapeutic tools to combat bacterial resistance against these classes of antibiotics.


Assuntos
Ocotea , Óleos Voláteis , Antibacterianos/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Óleos Voláteis/farmacologia , Safrol/farmacologia , Staphylococcus aureus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA