Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Oncogenesis ; 11(1): 67, 2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36333295

RESUMO

Hepatocellular carcinoma (HCC) accounts for 90% of primary liver cancer, the third leading cause of cancer-associated death worldwide. With the increasing prevalence of metabolic conditions, non-alcoholic fatty liver disease (NAFLD) is emerging as the fastest-growing HCC risk factor, and it imposes an additional layer of difficulty in HCC management. Dysregulated hepatic lipids are generally believed to constitute a deleterious environment cultivating the development of NAFLD-associated HCC. However, exactly which lipids or lipid regulators drive this process remains elusive. We report herein that sphingosine kinase 2 (SphK2), a key sphingolipid metabolic enzyme, plays a critical role in NAFLD-associated HCC. Ablation of Sphk2 suppressed HCC development in NAFLD livers via inhibition of hepatocyte proliferation both in vivo and in vitro. Mechanistically, SphK2 deficiency led to downregulation of ceramide transfer protein (CERT) that, in turn, decreased the ratio of pro-cancer sphingomyelin (SM) to anti-cancer ceramide. Overexpression of CERT restored hepatocyte proliferation, colony growth and cell cycle progression. In conclusion, the current study demonstrates that SphK2 is an essential lipid regulator in NAFLD-associated HCC, providing experimental evidence to support clinical trials of SphK2 inhibitors as systemic therapies against HCC.

2.
Proc Natl Acad Sci U S A ; 117(39): 24434-24442, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32917816

RESUMO

Sphingolipid dysregulation is often associated with insulin resistance, while the enzymes controlling sphingolipid metabolism are emerging as therapeutic targets for improving insulin sensitivity. We report herein that sphingosine kinase 2 (SphK2), a key enzyme in sphingolipid catabolism, plays a critical role in the regulation of hepatic insulin signaling and glucose homeostasis both in vitro and in vivo. Hepatocyte-specific Sphk2 knockout mice exhibit pronounced insulin resistance and glucose intolerance. Likewise, SphK2-deficient hepatocytes are resistant to insulin-induced activation of the phosphoinositide 3-kinase (PI3K)-Akt-FoxO1 pathway and elevated hepatic glucose production. Mechanistically, SphK2 deficiency leads to the accumulation of sphingosine that, in turn, suppresses hepatic insulin signaling by inhibiting PI3K activation in hepatocytes. Either reexpressing functional SphK2 or pharmacologically inhibiting sphingosine production restores insulin sensitivity in SphK2-deficient hepatocytes. In conclusion, the current study provides both experimental findings and mechanistic data showing that SphK2 and sphingosine in the liver are critical regulators of insulin sensitivity and glucose homeostasis.


Assuntos
Glucose/metabolismo , Insulina/metabolismo , Fígado/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Hepatócitos/enzimologia , Hepatócitos/metabolismo , Homeostase , Humanos , Fígado/enzimologia , Masculino , Camundongos , Camundongos Knockout , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Esfingolipídeos/metabolismo
3.
J Neurochem ; 153(2): 173-188, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31742704

RESUMO

Sphingosine 1-phosphate (S1P) is an essential lipid metabolite that signals through a family of five G protein-coupled receptors, S1PR1-S1PR5, to regulate cell physiology. The multiple sclerosis drug Fingolimod (FTY720) is a potent S1P receptor agonist that causes peripheral lymphopenia. Recent research has demonstrated direct neuroprotective properties of FTY720 in several neurodegenerative paradigms; however, neuroprotective properties of the native ligand S1P have not been established. We aimed to establish the significance of neurotrophic factor up-regulation by S1P for neuroprotection, comparing S1P with FTY720. S1P induced brain-derived neurotrophic factor (BDNF), leukemia inhibitory factor (LIF), platelet-derived growth factor B (PDGFB), and heparin-binding EGF-like growth factor (HBEGF) gene expression in primary human and murine astrocytes, but not in neurons, and to a much greater extent than FTY720. Accordingly, S1P but not FTY720 protected cultured neurons against excitotoxic cell death in a primary murine neuron-glia coculture model, and a neutralizing antibody to LIF blocked this S1P-mediated neuroprotection. Antagonists of S1PR1 and S1PR2 both inhibited S1P-mediated neurotrophic gene induction in human astrocytes, indicating that simultaneous activation of both receptors is required. S1PR2 signaling was transduced through Gα13 and the small GTPase Rho, and was necessary for the up-regulation and activation of the transcription factors FOS and JUN, which regulate LIF, BDNF, and HBEGF transcription. In summary, we show that S1P protects hippocampal neurons against excitotoxic cell death through up-regulation of neurotrophic gene expression, particularly LIF, in astrocytes. This up-regulation requires both S1PR1 and S1PR2 signaling. FTY720 does not activate S1PR2, explaining its relative inefficacy compared to S1P.


Assuntos
Astrócitos/metabolismo , Cloridrato de Fingolimode/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Lisofosfolipídeos/farmacologia , Fatores de Crescimento Neural/biossíntese , Neurônios/metabolismo , Esfingosina/análogos & derivados , Animais , Astrócitos/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Humanos , Camundongos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Esfingosina/farmacologia , Moduladores do Receptor de Esfingosina 1 Fosfato/farmacologia
4.
J Lipid Res ; 60(10): 1776-1786, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31409741

RESUMO

Lung cancer causes more deaths than any other cancer. Sphingolipids encompass metabolically interconnected species whose balance has pivotal effects on proliferation, migration, and apoptosis. In this study, we paralleled quantification of sphingolipid species with quantitative (q)PCR analyses of metabolic enzymes in order to identify dysregulated routes of sphingolipid metabolism in different subtypes of lung cancers. Lung samples were submitted to histopathological reexamination in order to confirm cancer type/subtype, which included adenocarcinoma histological subtypes and squamous cell and neuroendocrine carcinomas. Compared with benign lesions and tumor-free parenchyma, all cancers featured decreased sphingosine-1-phosphate and SMs. qPCR analyses evidenced differential mechanisms leading to these alterations between cancer types, with neuroendocrine carcinomas upregulating SGPL1, but CERT1 being downregulated in adenocarcinomas and squamous cell carcinomas. 2-Hydroxyhexosylceramides (2-hydroxyHexCers) were specifically increased in adenocarcinomas. While UDP-glycosyltransferase 8 (UGT8) transcript levels were increased in all cancer subtypes, fatty acid 2-hydroxylase (FA2H) levels were higher in adenocarcinomas than in squamous and neuroendocrine carcinomas. As a whole, we report differing mechanisms through which all forms of lung cancer achieve low SM and lysosphingolipids. Our results also demonstrate that FA2H upregulation is required for the accumulation of 2-hydroxyHexCers in lung cancers featuring high levels of UGT8.


Assuntos
Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Ceramidas/química , Ceramidas/metabolismo , Gangliosídeo Galactosiltransferase/genética , Oxigenases de Função Mista/genética , Adulto , Idoso de 80 Anos ou mais , Feminino , Humanos , Hidroxilação , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/genética
5.
Oncotarget ; 9(21): 15635-15649, 2018 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-29643998

RESUMO

Primary liver cancer is the 3rd leading cause of cancer deaths worldwide with very few effective treatments. Sphingosine kinase 1 (SphK1), a key regulator of sphingolipid metabolites, is over-expressed in human hepatocellular carcinoma (HCC) and our previous studies have shown that SphK1 is important in liver injury. We aimed to explore the role of SphK1 specifically in liver tumorigenesis using the SphK1 knockout (SphK1-/-) mouse. SphK1 deletion significantly reduced the number and the size of DEN-induced liver cancers in mice. Mechanistically, fewer proliferating but more apoptotic and senescent cells were detected in SphK1 deficient tumors compared to WT tumors. There was an increase in sphingosine rather than a decrease in sphingosine 1-phosphate (S1P) in SphK1 deficient tumors. Furthermore, the STAT3-S1PR pathway that has been reported previously to mediate the effect of SphK1 on colorectal cancers was not altered by SphK1 deletion in liver cancer. Instead, c-Myc protein expression was down-regulated by SphK1 deletion. In conclusion, this is the first in vivo evidence that SphK1 contributes to hepatocarcinogenesis. However, the downstream signaling pathways impacting on the development of HCC via SphK1 are organ specific providing further evidence that simply transferring known oncogenic molecular pathway targeting into HCC is not always valid.

6.
Neurobiol Aging ; 43: 89-100, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27255818

RESUMO

The anatomical progression of neurofibrillary tangle pathology throughout Alzheimer's disease (AD) pathogenesis runs inverse to the pattern of developmental myelination, with the disease preferentially affecting thinly myelinated regions. Myelin is comprised 80% of lipids, and the prototypical myelin lipids, galactosylceramide, and sulfatide are critical for neurological function. We observed severe depletion of galactosylceramide and sulfatide in AD brain tissue, which can be traced metabolically to the loss of their biosynthetic precursor, very long chain ceramide. The synthesis of very long chain ceramides is catalyzed by ceramide synthase 2 (CERS2). We demonstrate a significant reduction in CERS2 activity as early as Braak stage I/II in temporal cortex, and Braak stage III/IV in hippocampus and frontal cortex, indicating that loss of myelin-specific ceramide synthase activity precedes neurofibrillary tangle pathology in cortical regions. These findings open a new vista on AD pathogenesis by demonstrating a defect in myelin lipid biosynthesis at the preclinical stages of the disease. We posit that, over time, this defect contributes significantly to myelin deterioration, synaptic dysfunction, and neurological decline.


Assuntos
Doença de Alzheimer/etiologia , Córtex Cerebral/metabolismo , Proteínas de Membrana/deficiência , Bainha de Mielina/metabolismo , Esfingosina N-Aciltransferase/deficiência , Tauopatias/etiologia , Proteínas Supressoras de Tumor/deficiência , Proteínas tau/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
7.
Lipids ; 50(1): 101-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25403920

RESUMO

Ceramides are a family of signalling lipids with diverse physiological functions that include pro-differentiative and pro-apoptotic signalling. Ceramides and their derivatives are major constituents of myelin, maintaining neuronal conductivity. Ceramides are synthesized by ceramide synthases, of which there are six isoforms in mammals (CERS1-6). These enzymes catalyse the transfer of a variable length fatty acid to a sphingoid base, typically sphingosine or dihydrosphingosine. We previously reported a fluorescent thin-layer chromatography assay for ceramide synthase activity. In this paper we describe an improved fluorescent assay, using HPLC to achieve clear resolution of closely related ceramide species and to facilitate easy quantification of both product and substrate. Our HPLC assay protocol eliminates the need for a chloroform extraction step. Instead a simple three-step procedure is used: (1) reactions are run; (2) reactions are terminated with addition of methanol and centrifuged; (3) products are quantified with HPLC. HPLC resolution enables assays in which multiple fatty acid substrates are used in the same reaction. Using this approach, we show that CERS2 demonstrates a preference for the monounsaturated C24:1 fatty acid substrate compared to the saturated C24:0 substrate, potentially explaining why myelin is enriched in ceramides containing the monounsaturated form of very long chain fatty acids.


Assuntos
Ceramidas/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Ensaios Enzimáticos/métodos , Corantes Fluorescentes/metabolismo , Proteínas de Membrana/metabolismo , Esfingosina N-Aciltransferase/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Linhagem Celular Tumoral , Ceramidas/análise , Fluorescência , Corantes Fluorescentes/análise , Células HEK293 , Humanos , Limite de Detecção , Proteínas de Membrana/análise , Reprodutibilidade dos Testes , Esfingosina N-Aciltransferase/análise , Especificidade por Substrato , Proteínas Supressoras de Tumor/análise
8.
Biomolecules ; 4(1): 315-53, 2014 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-24970218

RESUMO

The sphingolipids are one of the major lipid families in eukaryotes, incorporating a diverse array of structural variants that exert a powerful influence over cell fate and physiology. Increased expression of sphingosine kinase 1 (SPHK1), which catalyses the synthesis of the pro-survival, pro-angiogenic metabolite sphingosine 1-phosphate (S1P), is well established as a hallmark of multiple cancers. Metabolic alterations that reduce levels of the pro-apoptotic lipid ceramide, particularly its glucosylation by glucosylceramide synthase (GCS), have frequently been associated with cancer drug resistance. However, the simple notion that the balance between ceramide and S1P, often referred to as the sphingolipid rheostat, dictates cell survival contrasts with recent studies showing that highly potent and selective SPHK1 inhibitors do not affect cancer cell proliferation or survival, and studies demonstrating higher ceramide levels in some metastatic cancers. Recent reports have implicated other sphingolipid metabolic enzymes such as acid sphingomyelinase (ASM) more strongly in cancer pathogenesis, and highlight lysosomal sphingolipid metabolism as a possible weak point for therapeutic targeting in cancer. This review describes the evidence implicating different sphingolipid metabolic enzymes and their products in cancer pathogenesis, and suggests how newer systems-level approaches may improve our overall understanding of how oncogenic transformation reconfigures sphingolipid metabolism.


Assuntos
Transformação Celular Neoplásica/metabolismo , Neoplasias/metabolismo , Esfingolipídeos/metabolismo , Animais , Humanos , Lisofosfolipídeos/metabolismo , Neoplasias/enzimologia , Esfingosina/análogos & derivados , Esfingosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA