Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Arch Insect Biochem Physiol ; 116(3): e22135, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39038196

RESUMO

The larvae of Contarinia nasturtii (Kieffer) (Diptera: Cecidomyiidae), the swede midge, targets the meristem of brassica crops where they induce the formation of galls and disrupt seed and vegetable production. Previously, we examined the salivary gland transcriptome of newly-hatched first instar larvae as they penetrated the host and initiated gall formation. Here we examine the salivary gland and midgut transcriptome of third instar larvae and provide evidence for cooperative nutrient acquisition beginning with secretion of enzymes and feeding facilitators followed by gastrointestinal digestion. Sucrose, presumably obtained from the phloem, appeared to be a major nutrient source as several α-glucosidases (sucrases, maltases) and ß-fructofuranosidases (invertases) were identified. Genes encoding ß-fructofuranosidases/invertases were among the most highly expressed in both tissues and represented two distinct gene families that may have originated via horizontal gene transfer from bacteria. The importance of the phloem as a nutrient source is underscored by the expression of genes encoding regucalcin and ARMET (arginine-rich mutated in early stages of tumor) which interfere with calcium signalling and prevent sieve tube occlusion. Lipids, proteins, and starch appear to serve as a secondary nutrient sources. Genes encoding enzymes involved in the detoxification of glucosinolates (myrosinases, arylsulfatases, and glutathione-S-transferases) were expressed indicative of Brassicaceae host specialization. The midgut expressed simple peritrophins and mucins typical of those found in Type II peritrophic matrices, the first such description for a gall midge.


Assuntos
Dípteros , Larva , Glândulas Salivares , Animais , Glândulas Salivares/metabolismo , Glândulas Salivares/enzimologia , Larva/genética , Larva/metabolismo , Larva/crescimento & desenvolvimento , Dípteros/genética , Dípteros/enzimologia , Dípteros/metabolismo , Transcriptoma , Digestão , Genômica , Trato Gastrointestinal/metabolismo , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética
2.
Transgenic Res ; 31(1): 131-148, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34802109

RESUMO

Camelina sativa (camelina) is emerging as an alternative oilseed crop due to its short growing cycle, low input requirements, adaptability to less favorable growing environments and a seed oil profile suitable for biofuel and industrial applications. Camelina meal and oil are also registered for use in animal and fish feeds; however, like meals derived from most cereals and oilseeds, it is deficient in certain essential amino acids, such as lysine. In higher plants, the reaction catalyzed by dihydrodipicolinate synthase (DHDPS) is the first committed step in the biosynthesis of lysine and is subject to regulation by lysine through feedback inhibition. Here, we report enhancement of lysine content in C. sativa seed via expression of a feedback inhibition-insensitive form of DHDPS from Corynebacterium glutamicums (CgDHDPS). Two genes encoding C. sativa DHDPS were identified and the endogenous enzyme is partially insensitive to lysine inhibition. Site-directed mutagenesis was used to examine the impact of alterations, alone and in combination, present in lysine-desensitized DHDPS isoforms from Arabidopsis thaliana DHDPS (W53R), Nicotiana tabacum (N80I) and Zea mays (E84K) on C. sativa DHDPS lysine sensitivity. When introduced alone, each of the alterations decreased sensitivity to lysine; however, enzyme specific activity was also affected. There was evidence of molecular or structural interplay between residues within the C. sativa DHDPS allosteric site as coupling of the W53R mutation with the N80V mutation decreased lysine sensitivity of the latter, but not to the level with the W53R mutation alone. Furthermore, the activity and lysine sensitivity of the triple mutant (W53R/N80V/E84T) was similar to the W53R mutation alone or the C. glutamicum DHDPS. The most active and most lysine-insensitive C. sativa DHDPS variant (W53R) was not inhibited by free lysine up to 1 mM, comparable to the C. glutamicums enzyme. Seed lysine content increased 13.6 -22.6% in CgDHDPS transgenic lines and 7.6-13.2% in the mCsDHDPS lines. The high lysine-accumulating lines from this work may be used to produce superior quality animal feed with improved essential amino acid profile.


Assuntos
Arabidopsis , Lisina , Arabidopsis/genética , Arabidopsis/metabolismo , Escherichia coli , Retroalimentação , Hidroliases , Sementes/genética , Sementes/metabolismo
3.
Arch Insect Biochem Physiol ; 106(1): e21755, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33118236

RESUMO

Molecular chaperones are crucial for the correct folding of newly synthesized polypeptides, in particular, under stress conditions. Various studies have revealed the involvement of molecular chaperones, such as heat shock proteins, in diapause maintenance and starvation; however, the role of other chaperones in diapause and starvation relatively is unknown. In the current study, we identified two lectin-type chaperones with calcium affinity, a calreticulin (LdCrT) and a calnexin (LdCnX), that were present in the fat body of the Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae) during diapause. Both proteins possessed an N-globular domain, a P-arm domain, and a highly charged C-terminal domain, while an additional transmembrane domain was present in LdCnX. Phylogenetic analysis revealed distinction at the order level. Both genes were expressed in multiple tissues in larval and adult stages, and constitutively throughout development, though a starvation response was detected only for LdCrT. In females, diapause-related expression analysis in the whole body revealed an upregulation of both genes by post-diapause, but a downregulation by diapause only for LdCrT. By contrast, males revealed no alteration in their diapause-related expression pattern in the entire body for both genes. Fat body-specific expression analysis of both genes in relation to diapause revealed the same expression pattern with no alteration in females and downregulation in males by post-diapause. This study suggests that calcium-binding chaperones play similar and possibly gender-specific roles during diapause.


Assuntos
Calnexina , Calreticulina , Besouros/metabolismo , Diapausa de Inseto/fisiologia , Corpo Adiposo/metabolismo , Animais , Cálcio/metabolismo , Calnexina/química , Calnexina/genética , Calnexina/metabolismo , Calreticulina/química , Calreticulina/genética , Calreticulina/metabolismo , Besouros/genética , Feminino , Genes de Insetos , Masculino , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Filogenia , Caracteres Sexuais , Inanição
4.
Front Plant Sci ; 11: 1021, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32754179

RESUMO

Sclerotinia sclerotiorum is a characteristic necrotrophic plant pathogen and is dependent on the induction of host cell death for nutrient acquisition. To identify necrosis-inducing effectors, the genome of S. sclerotiorum was scanned for genes encoding small, secreted, cysteine-rich proteins. These potential effectors were tested for their ability to induce necrosis in Nicotiana benthamiana via Agrobacterium-mediated expression and for cellular localization in host cells. Six novel proteins were discovered, of which all but one required a signal peptide for export to the apoplast for necrotizing activity. Virus-induced gene silencing revealed that the five necrosis-inducing effectors with a requirement for secretion also required the plant co-receptor-like kinases Brassinosteroid Insensitive 1-Associated Receptor Kinase 1 (BAK1) and Suppressor of BAK1-Interacting Receptor-like Kinase 1 (SOBIR1) for the induction of necrosis. S. sclerotiorum necrosis-inducing effector 2 (SsNE2) represented a new class of necrosis-inducing proteins as orthologs were identified in several other phytopathogenic fungi that were also capable of inducing necrosis. Substitution of conserved cysteine residues with alanine reduced, but did not abolish, the necrotizing activity of SsNE2 and full-length protein was required for function as peptides spanning the entire protein were unable to induce necrosis. These results illustrate the importance of necrosis-inducing effectors for S. sclerotiorum virulence and the role of host extracellular receptor(s) in effector-triggered susceptibility to this pathogen.

5.
Mol Ecol Resour ; 19(2): 485-496, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30449074

RESUMO

The cabbage looper, Trichoplusia ni, is a globally distributed highly polyphagous herbivore and an important agricultural pest. T. ni has evolved resistance to various chemical insecticides, and is one of the only two insect species that have evolved resistance to the biopesticide Bacillus thuringiensis (Bt) in agricultural systems and has been selected for resistance to baculovirus infections. We report a 333-Mb high-quality T. ni genome assembly, which has N50 lengths of scaffolds and contigs of 4.6 Mb and 140 Kb, respectively, and contains 14,384 protein-coding genes. High-density genetic maps were constructed to anchor 305 Mb (91.7%) of the assembly to 31 chromosomes. Comparative genomic analysis of T. ni with Bombyx mori showed enrichment of tandemly duplicated genes in T. ni in families involved in detoxification and digestion, consistent with the broad host range of T. ni. High levels of genome synteny were found between T. ni and other sequenced lepidopterans. However, genome synteny analysis of T. ni and the T. ni derived cell line High Five (Hi5) indicated extensive genome rearrangements in the cell line. These results provided the first genomic evidence revealing the high instability of chromosomes in lepidopteran cell lines known from karyotypic observations. The high-quality T. ni genome sequence provides a valuable resource for research in a broad range of areas including fundamental insect biology, insect-plant interactions and co-evolution, mechanisms and evolution of insect resistance to chemical and biological pesticides, and technology development for insect pest management.


Assuntos
Cromossomos de Insetos , Genoma de Inseto , Herbivoria/genética , Lepidópteros/genética , Animais , Biologia Computacional , Evolução Molecular , Rearranjo Gênico , Análise de Sequência de DNA , Sintenia
6.
Plant J ; 88(5): 879-894, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27513981

RESUMO

Camelina sativa is currently being embraced as a viable industrial bio-platform crop due to a number of desirable agronomic attributes and the unique fatty acid profile of the seed oil that has applications for food, feed and biofuel. The recent completion of the reference genome sequence of C. sativa identified a young hexaploid genome. To complement this work, we have generated a genome-wide developmental transcriptome map by RNA sequencing of 12 different tissues covering major developmental stages during the life cycle of C. sativa. We have generated a digital atlas of this comprehensive transcriptome resource that enables interactive visualization of expression data through a searchable database of electronic fluorescent pictographs (eFP browser). An analysis of this dataset supported expression of 88% of the annotated genes in C. sativa and provided a global overview of the complex architecture of temporal and spatial gene expression patterns active during development. Conventional differential gene expression analysis combined with weighted gene expression network analysis uncovered similarities as well as differences in gene expression patterns between different tissues and identified tissue-specific genes and network modules. A high-quality census of transcription factors, analysis of alternative splicing and tissue-specific genome dominance provided insight into the transcriptional dynamics and sub-genome interplay among the well-preserved triplicated repertoire of homeologous loci. The comprehensive transcriptome atlas in combination with the reference genome sequence provides a powerful resource for genomics research which can be leveraged to identify functional associations between genes and understand the regulatory networks underlying developmental processes.


Assuntos
Biocombustíveis , Brassicaceae/metabolismo , Proteínas de Plantas/metabolismo , Transcriptoma/genética , Brassicaceae/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Plantas/genética , Poliploidia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA