Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Med Chem ; 265: 116073, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38169270

RESUMO

Blocking iron uptake and metabolism has been emerging as a promising therapeutic strategy for the development of novel antimicrobial compounds. Like all mycobacteria, M. abscessus (Mab) has evolved several countermeasures to scavenge iron from host carrier proteins, including the production of siderophores, which play a crucial role in these processes. In this study, we solved, for the first time, the crystal structure of Mab-SaS, the first enzyme involved in the biosynthesis of siderophores. Moreover, we screened a small, focused library and identified a compound exhibiting a potent inhibitory effect against Mab-SaS (IC50 ≈ 2 µM). Its binding mode was investigated by means of Induced Fit Docking simulations, performed on the crystal structure presented herein. Furthermore, cytotoxicity data and pharmacokinetic predictions revealed the safety and drug-likeness of this class of compounds. Finally, the crystallographic data were used to optimize the model for future virtual screening campaigns. Taken together, the findings of our study pave the way for the identification of potent Mab-SaS inhibitors, based on both established and unexplored chemotypes.


Assuntos
Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Humanos , Infecções por Mycobacterium não Tuberculosas/microbiologia , Salicilatos/farmacologia , Sideróforos/farmacologia , Ferro
2.
ACS Omega ; 8(36): 32424-32431, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37720761

RESUMO

HMGA proteins are intrinsically disordered (ID) chromatin architectural factors characterized by three DNA binding domains (AT-hooks) that allow them to bind into the DNA minor groove of AT-rich stretches. HMGA are functionally involved in regulating transcription, RNA processing, DNA repair, and chromatin remodeling and dynamics. These proteins are highly expressed and play essential functions during embryonic development. They are almost undetectable in adult tissues but are re-expressed at high levels in all cancers where they are involved in neoplastic transformation and cancer progression. We focused on identifying new small molecules capable of binding into the minor groove of AT-rich DNA sequences that could compete with HMGA for DNA binding and, thus, potentially interfere with their activities. Here, a docking-based virtual screening of a unique high diversity in-house library composed of around 1000 individual natural products identified 16 natural compounds as potential minor groove binders that could inhibit the interaction between HMGA and DNA. To verify the ability of these selected compounds to compete with HMGA proteins, we screened them using electrophoretic mobility shift assays. We identified Sorocein C, a Diels-Alder (D-A)-type adducts, isolated from Sorocea ilicifolia and Sorocea bonplandii with an HMGA/DNA-displacing activity and compared its activity with that of two structurally related compounds, Sorocein A and Sorocein B. All these compounds showed a cytotoxicity effect on cancer cells, suggesting that the Sorocein-structural family may provide new and yet unexplored chemotypes for the development of minor groove binders to be evaluated as anticancer agents.

3.
Pharmaceutics ; 15(2)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36839823

RESUMO

Targeting pathogenic mechanisms, rather than essential processes, represents a very attractive approach for the development of new antimycobacterial drugs. In this context, iron acquisition routes have recently emerged as potentially druggable pathways. However, the importance of siderophore biosynthesis in the virulence and pathogenicity of M. abscessus (Mab) is still poorly understood. In this study, we investigated the Salicylate Synthase (SaS) of Mab as an innovative molecular target for the development of inhibitors of siderophore production. Notably, Mab-SaS does not have any counterpart in human cells, making it an interesting candidate for drug discovery. Starting from the analysis of the binding of a series of furan-based derivatives, previously identified by our group as inhibitors of MbtI from M. tuberculosis (Mtb), we successfully selected the lead compound 1, exhibiting a strong activity against Mab-SaS (IC50 ≈ 5 µM). Computational studies characterized the key interactions between 1 and the enzyme, highlighting the important roles of Y387, G421, and K207, the latter being one of the residues involved in the first step of the catalytic reaction. These results support the hypothesis that 5-phenylfuran-2-carboxylic acids are also a promising class of Mab-SaS inhibitors, paving the way for the optimization and rational design of more potent derivatives.

4.
Protein Sci ; 32(2): e4563, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36605018

RESUMO

Nerve growth factor (NGF), the prototypical neurotrophic factor, is involved in the maintenance and growth of specific neuronal populations, whereas its precursor, proNGF, is involved in neuronal apoptosis. Binding of NGF or proNGF to TrkA, p75NTR , and VP10p receptors triggers complex intracellular signaling pathways that can be modulated by endogenous small-molecule ligands. Here, we show by isothermal titration calorimetry and NMR that ATP binds to the intrinsically disordered pro-peptide of proNGF with a micromolar dissociation constant. We demonstrate that Mg2+ , known to play a physiological role in neurons, modulates the ATP/proNGF interaction. An integrative structural biophysics analysis by small angle X-ray scattering and hydrogen-deuterium exchange mass spectrometry unveils that ATP binding induces a conformational rearrangement of the flexible pro-peptide domain of proNGF. This suggests that ATP may act as an allosteric modulator of the overall proNGF conformation, whose likely distinct biological activity may ultimately affect its physiological homeostasis.


Assuntos
Fator de Crescimento Neural , Neurônios , Fator de Crescimento Neural/química , Fator de Crescimento Neural/metabolismo , Domínios Proteicos , Neurônios/metabolismo , Trifosfato de Adenosina
5.
Hum Mutat ; 39(2): 266-280, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29134705

RESUMO

Dystroglycan (DG) is a cell adhesion complex composed by two subunits, the highly glycosylated α-DG and the transmembrane ß-DG. In skeletal muscle, DG is involved in dystroglycanopathies, a group of heterogeneous muscular dystrophies characterized by a reduced glycosylation of α-DG. The genes mutated in secondary dystroglycanopathies are involved in the synthesis of O-mannosyl glycans and in the O-mannosylation pathway of α-DG. Mutations in the DG gene (DAG1), causing primary dystroglycanopathies, destabilize the α-DG core protein influencing its binding to modifying enzymes. Recently, a homozygous mutation (p.Cys699Phe) hitting the ß-DG ectodomain has been identified in a patient affected by muscle-eye-brain disease with multicystic leucodystrophy, suggesting that other mechanisms than hypoglycosylation of α-DG could be implicated in dystroglycanopathies. Herein, we have characterized the DG murine mutant counterpart by transfection in cellular systems and high-resolution microscopy. We observed that the mutation alters the DG processing leading to retention of its uncleaved precursor in the endoplasmic reticulum. Accordingly, small-angle X-ray scattering data, corroborated by biochemical and biophysical experiments, revealed that the mutation provokes an alteration in the ß-DG ectodomain overall folding, resulting in disulfide-associated oligomerization. Our data provide the first evidence of a novel intracellular mechanism, featuring an anomalous endoplasmic reticulum-retention, underlying dystroglycanopathy.


Assuntos
Distroglicanas/genética , Leucoencefalopatias/genética , Proteínas Mutantes/genética , Síndrome de Walker-Warburg/genética , Linhagem Celular , Humanos
6.
PLoS One ; 10(5): e0124277, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25932631

RESUMO

The severe dystroglycanopathy known as a form of limb-girdle muscular dystrophy (LGMD2P) is an autosomal recessive disease caused by the point mutation T192M in α-dystroglycan. Functional expression analysis in vitro and in vivo indicated that the mutation was responsible for a decrease in posttranslational glycosylation of dystroglycan, eventually interfering with its extracellular-matrix receptor function and laminin binding in skeletal muscle and brain. The X-ray crystal structure of the missense variant T190M of the murine N-terminal domain of α-dystroglycan (50-313) has been determined, and showed an overall topology (Ig-like domain followed by a basket-shaped domain reminiscent of the small subunit ribosomal protein S6) very similar to that of the wild-type structure. The crystallographic analysis revealed a change of the conformation assumed by the highly flexible loop encompassing residues 159-180. Moreover, a solvent shell reorganization around Met190 affects the interaction between the B1-B5 anti-parallel strands forming part of the floor of the basket-shaped domain, with likely repercussions on the folding stability of the protein domain(s) and on the overall molecular flexibility. Chemical denaturation and limited proteolysis experiments point to a decreased stability of the T190M variant with respect to its wild-type counterpart. This mutation may render the entire L-shaped protein architecture less flexible. The overall reduced flexibility and stability may affect the functional properties of α-dystroglycan via negatively influencing its binding behavior to factors needed for dystroglycan maturation, and may lay the molecular basis of the T190M-driven primary dystroglycanopathy.


Assuntos
Distroglicanas/química , Modelos Moleculares , Distrofia Muscular do Cíngulo dos Membros/metabolismo , Proteínas Mutantes/química , Animais , Linhagem Celular Tumoral , Humanos , Ligação de Hidrogênio , Camundongos , Microscopia , Estabilidade Proteica , Estrutura Terciária de Proteína , Difração de Raios X
7.
Biophys J ; 108(3): 687-97, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25650935

RESUMO

The homodimer NGF (nerve growth factor) exerts its neuronal activity upon binding to either or both distinct transmembrane receptors TrkA and p75(NTR). Functionally relevant interactions between NGF and these receptors have been proposed, on the basis of binding and signaling experiments. Namely, a ternary TrkA/NGF/p75(NTR) complex is assumed to be crucial for the formation of the so-called high-affinity NGF binding sites. However, the existence, on the cell surface, of direct extracellular interactions is still a matter of controversy. Here, supported by a small-angle x-ray scattering solution study of human NGF, we propose that it is the oligomerization state of the secreted NGF that may drive the formation of the ternary heterocomplex. Our data demonstrate the occurrence in solution of a concentration-dependent distribution of dimers and dimer of dimers. A head-to-head molecular assembly configuration of the NGF dimer of dimers has been validated. Overall, these findings prompted us to suggest a new, to our knowledge, model for the transient ternary heterocomplex, i.e., a TrkA/NGF/p75(NTR) ligand/receptors molecular assembly with a (2:4:2) stoichiometry. This model would neatly solve the problem posed by the unconventional orientation of p75(NTR) with respect to TrkA, as being found in the crystal structures of the TrkA/NGF and p75(NTR)/NGF complexes.


Assuntos
Simulação de Dinâmica Molecular , Fator de Crescimento Neural/metabolismo , Sítios de Ligação , Humanos , Ligação de Hidrogênio , Fator de Crescimento Neural/química , Multimerização Proteica , Receptor trkA , Espalhamento a Baixo Ângulo , Difração de Raios X
8.
PLoS One ; 9(1): e87862, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24498215

RESUMO

Pseudomonas syringae pv. actinidiae (Psa) is an emerging phytopathogen causing bacterial canker disease in kiwifruit plants worldwide. Quorum sensing (QS) gene regulation plays important roles in many different bacterial plant pathogens. In this study we analyzed the presence and possible role of N-acyl homoserine lactone (AHL) quorum sensing in Psa. It was established that Psa does not produce AHLs and that a typical complete LuxI/R QS system is absent in Psa strains. Psa however possesses three putative luxR solos designated here as PsaR1, PsaR2 and PsaR3. PsaR2 belongs to the sub-family of LuxR solos present in many plant associated bacteria (PAB) that binds and responds to yet unknown plant signal molecules. PsaR1 and PsaR3 are highly similar to LuxRs which bind AHLs and are part of the canonical LuxI/R AHL QS systems. Mutation in all the three luxR solos of Psa showed reduction of in planta survival and also showed additive effect if more than one solo was inactivated in double mutants. Gene promoter analysis revealed that the three solos are not auto-regulated and investigated their possible role in several bacterial phenotypes.


Assuntos
Actinidia/microbiologia , Acil-Butirolactonas , Doenças das Plantas/microbiologia , Pseudomonas syringae/metabolismo , Proteínas Repressoras/metabolismo , Transativadores/metabolismo , Pseudomonas syringae/genética , Proteínas Repressoras/genética , Transativadores/genética
9.
PLoS One ; 6(2): e17321, 2011 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-21387003

RESUMO

During adulthood, the neurotrophin Nerve Growth Factor (NGF) sensitizes nociceptors, thereby increasing the response to noxious stimuli. The relationship between NGF and pain is supported by genetic evidence: mutations in the NGF TrkA receptor in patients affected by an hereditary rare disease (Hereditary Sensory and Autonomic Neuropathy type IV, HSAN IV) determine a congenital form of severe pain insensitivity, with mental retardation, while a mutation in NGFB gene, leading to the aminoacid substitution R100W in mature NGF, determines a similar loss of pain perception, without overt cognitive neurological defects (HSAN V). The R100W mutation provokes a reduced processing of proNGF to mature NGF in cultured cells and a higher percentage of neurotrophin secreted is in the proNGF form. Moreover, using Surface Plasmon Resonance we showed that the R100W mutation does not affect NGF binding to TrkA, while it abolishes NGF binding to p75NTR receptors. However, it remains to be clarified whether the major impact of the mutation is on the biological function of proNGF or of mature NGF and to what extent the effects of the R100W mutation on the HSAN V clinical phenotype are developmental, or whether they reflect an impaired effectiveness of NGF to regulate and mediate nociceptive transmission in adult sensory neurons. Here we show that the R100 mutation selectively alters some of the signaling pathways activated downstream of TrkA NGF receptors. NGFR100 mutants maintain identical neurotrophic and neuroprotective properties in a variety of cell assays, while displaying a significantly reduced pain-inducing activity in vivo (n = 8-10 mice/group). We also show that proNGF has a significantly reduced nociceptive activity, with respect to NGF. Both sets of results jointly contribute to elucidating the mechanisms underlying the clinical HSAN V manifestations, and to clarifying which receptors and intracellular signaling cascades participate in the pain sensitizing action of NGF.


Assuntos
Neuropatias Hereditárias Sensoriais e Autônomas/genética , Neuropatias Hereditárias Sensoriais e Autônomas/fisiopatologia , Fatores de Crescimento Neural/fisiologia , Percepção da Dor/fisiologia , Dor/genética , Substituição de Aminoácidos/genética , Substituição de Aminoácidos/fisiologia , Animais , Arginina/genética , Células 3T3 BALB , Células Cultivadas , Embrião de Galinha , Predisposição Genética para Doença , Neuropatias Hereditárias Sensoriais e Autônomas/metabolismo , Humanos , Masculino , Camundongos , Proteínas Mutantes/metabolismo , Proteínas Mutantes/fisiologia , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Células PC12 , Dor/metabolismo , Ratos , Receptor de Fator de Crescimento Neural/genética , Receptor de Fator de Crescimento Neural/metabolismo , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/fisiologia , Triptofano/genética
10.
Biochem Biophys Res Commun ; 391(1): 824-9, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19945432

RESUMO

Nerve Growth Factor (NGF) signalling is mediated by the TrkA and p75NTR receptors. Besides its neurotrophic and survival activities, NGF displays a potent pro-nociceptive activity. Recently, a missense point mutation was found in the NGFB gene (C661T, leading to the aminoacid substitution R100W) of individuals affected by a form of hereditary loss of pain perception (hereditary sensory and autonomic neuropathy type V, HSAN V). In order to gain insights into the functional consequences of the HSAN V NGF mutation, two sets of hNGFR100 mutants were expressed in Escherichia coli and purified, as mature NGF or proNGF, for in vitro receptor binding studies. Here, we show by Surface Plasmon Resonance analysis that the R100 mutation selectively disrupts binding of hNGF to p75NTR receptor, to an extent which depends on the substituting residue at position 100, while the affinity of hNGFR100 mutants for TrkA receptor is not affected. As for unprocessed hproNGF, the binding of the R100 variants to p75NTR receptor shows only a limited impairment, showing that the impact of the R100 mutation on p75NTR receptor binding is greater in the context of mature, processed hNGF. These results provide a basis for elucidating the mechanisms underlying the clinical manifestations of HSAN V patients, and provide a basis for the development of "painless" hNGF molecules with therapeutic potential.


Assuntos
Neuropatias Hereditárias Sensoriais e Autônomas/metabolismo , Fator de Crescimento Neural/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Insensibilidade Congênita à Dor/metabolismo , Receptor trkA/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Neuropatias Hereditárias Sensoriais e Autônomas/genética , Humanos , Mutação , Fator de Crescimento Neural/química , Fator de Crescimento Neural/genética , Insensibilidade Congênita à Dor/genética , Conformação Proteica , Ressonância de Plasmônio de Superfície
11.
Curr Alzheimer Res ; 6(2): 158-70, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19355851

RESUMO

Nerve growth factor (NGF) deficits are linked to Alzheimer's Disease (AD), due to the role of NGF on basal forebrain cholinergic neurons (BFCN). We have further established that a disequilibrium in NGF signaling and/or processing from its precursor proNGF is also directly and causally related to the aberrant activation of an amyloidogenic route to neurodegeneration. The therapeutic potential of using human NGF to provide a long-lasting cholinergic trophic support, thereby preventing or slowing cognitive decline in AD patients, has therefore a strong rationale. However, a simple and practical means of delivering NGF to the brain in a safe and long-term manner, limiting the undesired adverse effects of NGF in activating nociceptive responses, has represented a significant challenge. For this reason, pilot clinical studies have been performed so far with invasive approaches requiring neurosurgery. We obtained a proof of principle, in neurodegeneration animal models, of an alternative, non-invasive delivery of NGF through an intranasal route, which facilitates access of NGF to the central nervous system (CNS), while minimizing the biodistribution of NGF to compartments where it activates undesired effects, such as pain. The ideal NGF product for a non invasive NGF-based therapy would be a recombinant NGF that, while exhibiting an identical biological activity to that of human NGF, can be traced, against the endogenous NGF, in order to optimize the therapeutical dose range and meet the required therapeutic window. We describe an engineered mutein of hNGF, hNGF-61, that is selectively recognized, against endogenous NGF, by a specific antibody. hNGF-61 mutein has an identical potency and bioactivity profile as hNGF, in vitro and in vivo. Moreover, hNGF-61 and hNGF are equally effective in rescuing the behavioral and neurodegenerative phenotype in adult and aged AD11 anti-NGF mice. Finally, we demonstrated that intranasally delivered hNGF-61 is significantly more effective than ocularly applied hNGF-61, to determine phenotypic rescue in AD11 mice. The development of hNGF-61 towards clinical applications in AD patients is under way.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Fator de Crescimento Neural/uso terapêutico , Doença de Alzheimer/imunologia , Análise de Variância , Animais , Anticorpos/genética , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Transformada , Proliferação de Células/efeitos dos fármacos , Chlorocebus aethiops , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Vias de Administração de Medicamentos , Ensaio de Imunoadsorção Enzimática/métodos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Modelos Moleculares , Mutação , Fator de Crescimento Neural/farmacologia , Testes Neuropsicológicos , Ratos , Receptor de Fator de Crescimento Neural/genética , Receptor de Fator de Crescimento Neural/metabolismo , Receptor trkA/metabolismo , Alinhamento de Sequência , Ressonância de Plasmônio de Superfície/métodos , Transfecção/métodos
12.
Proteins ; 75(4): 990-1009, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19089979

RESUMO

The unprocessed precursor of the Nerve Growth Factor (NGF), proNGF, has additional functions, besides its initially described role as a chaperone for NGF folding. The precursor protein endows apoptotic and/or neurotrophic properties, in contrast to the mature part. The structural and molecular basis for such distinct activities are presently unknown. Aiming to gain insights into the specific molecular interactions that govern rm-proNGF biological activities versus those of its mature counterpart, a structural study by synchrotron small angle X-ray scattering (SAXS) in solution was carried out. The different binding properties of the two proteins were investigated by surface plasmon resonance (SPR) using, as structural probes, a panel of anti-NGF antibodies and the soluble forms of TrkA and p75(NTR) receptors. SAXS measurements revealed the rm-proNGF to be dimeric and anisometric, with the propeptide domain being intrinsically unstructured. Ab initio reconstructions assuming twofold symmetry generated two types of structural models, a globular "crab-like" and an elongated shape that resulted in equally good fits of the scattering data. A novel method accounting for possible coexistence of different conformations contributing to the experimental scattering pattern, with no symmetry constraints, suggests the "crab-like" to be a more likely proNGF conformation. To exploit the potential of chemical stabilizers affecting the existing conformational protein populations, SAXS data were also collected in the presence of ammonium sulphate. An increase of the proNGF compactness was observed. SPR data pinpoints that the propeptide of proNGF may act as an intrinsically unstructured protein domain, characterized by a molecular promiscuity in the interaction/binding to multiple partners (TrkA and p75(NTR) receptors and a panel of neutralizing anti-NGF antibodies) depending on the physiological conditions of the cell. These data provide a first insight into the structural basis for the selectivity of mouse short proNGF, versus NGF, towards its binding partners.


Assuntos
Fator de Crescimento Neural/química , Fator de Crescimento Neural/metabolismo , Precursores de Proteínas/química , Precursores de Proteínas/metabolismo , Receptor trkA/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo , Sequência de Aminoácidos , Sulfato de Amônio/química , Animais , Afinidade de Anticorpos , Simulação por Computador , Escherichia coli/genética , Humanos , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Fator de Crescimento Neural/genética , Células PC12 , Fosforilação , Conformação Proteica , Precursores de Proteínas/genética , Ratos , Receptor trkA/química , Receptores de Fator de Crescimento Neural/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espalhamento a Baixo Ângulo , Alinhamento de Sequência , Ressonância de Plasmônio de Superfície , Difração de Raios X
13.
J Mol Biol ; 381(4): 881-96, 2008 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-18635195

RESUMO

The anti-nerve growth factor (NGF) monoclonal antibody alphaD11 is a potent antagonist that neutralizes the biological functions of its antigen in vivo. NGF antagonism is expected to be a highly effective and safe therapeutic approach in many pain states. A comprehensive functional and structural analysis of alphaD11 monoclonal antibody was carried out, showing its ability to neutralize NGF binding to either tropomyosine receptor kinase A (TrkA) or p75 receptors. The 3-D structure of the alphaD11 Fab fragment was solved at 1.7 A resolution. A computational docking model of the alphaD11 Fab-NGF complex, based on epitope mapping using a pool of 44 NGF mutants and experimentally validated by small-angle X-ray scattering, provided the structural basis for identifying the residues involved in alphaD11 Fab binding. The present study pinpoints loop II of NGF to be an important structural determinant for NGF biological activity mediated by TrkA receptor.


Assuntos
Anticorpos Monoclonais/imunologia , Fator de Crescimento Neural/química , Fator de Crescimento Neural/metabolismo , Receptor trkA/química , Receptor trkA/metabolismo , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/química , Células COS , Chlorocebus aethiops , Ensaio de Imunoadsorção Enzimática , Mapeamento de Epitopos , Humanos , Ligação de Hidrogênio , Fragmentos Fab das Imunoglobulinas/química , Cinética , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Testes de Neutralização , Estrutura Secundária de Proteína , Ratos , Espalhamento a Baixo Ângulo , Relação Estrutura-Atividade , Difração de Raios X
14.
Proc Natl Acad Sci U S A ; 104(8): 2985-90, 2007 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-17301229

RESUMO

Nerve growth factor (NGF) is involved in pain transduction mechanisms and plays a key role in many persistent pain states, notably those associated with inflammation. On this basis, both the NGF ligand and its receptor TrkA (tyrosine kinase A) represent an eligible target for pain therapy. Although the direct involvement of NGF in pain modulation is well established, the effect of a direct functional block of the TrkA receptor is still unknown. In this study, we have demonstrated that MNAC13, the only anti-TrkA monoclonal antibody for which function neutralizing properties have been clearly shown both in vitro and in vivo, induces analgesia in both inflammatory and neuropathic pain models, with a surprisingly long-lasting effect in the latter. The formalin-evoked pain licking responses are significantly reduced by the MNAC13 antibody in CD1 mice. Remarkably, treatment with the anti-TrkA antibody also produces a significant antiallodynic effect on neuropathic pain: repeated i.p. injections of MNAC13 induce significant functional recovery in mice subjected to sciatic nerve ligation, with effects persisting after administration. Furthermore, a clear synergistic effect is observed when MNAC13 is administered in combination with opioids, at doses that are not efficacious per se. This study represents a direct demonstration that neutralizing antibodies directed against the TrkA receptor may display potent analgesic effects in inflammatory and chronic pain.


Assuntos
Anticorpos Monoclonais/farmacologia , Inflamação/tratamento farmacológico , Dor/tratamento farmacológico , Receptor trkA/imunologia , Células 3T3 , Analgésicos Opioides/farmacologia , Animais , Sítios de Ligação de Anticorpos/efeitos dos fármacos , Modelos Animais de Doenças , Formaldeído , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Fator de Crescimento Neural/metabolismo , Testes de Neutralização , Dor/induzido quimicamente , Receptor trkA/química , Transdução de Sinais/efeitos dos fármacos
15.
Proteins ; 58(3): 717-27, 2005 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-15625712

RESUMO

MNAC13, a mouse monoclonal antibody, recognizes with high affinity and specificity the neurotrophin receptor TrkA and displays a neutralizing activity toward the NGF/TrkA interaction. Detailed knowledge of the molecular basis determining the specificity of this antibody is of importance because of its potential use as a modulator of the TrkA-mediated NGF activity. Here, we report a full biochemical and structural characterization of the MNAC13 antibody. Epitope mapping studies, by serial deletion mutants and by phage display, reveal a conformational epitope that is localized on the carboxy-terminal region of the first immunoglobulin-like domain (d4) of TrkA. The X-ray crystal structure of the MNAC13 Fab fragment has been determined and refined to 1.8 A resolution. The antigen-binding site is characterized by a crevice, surrounded by hydrophilic-charged residues on either side, dipping deep toward three mainly hydrophobic subsites. Remarkably an isopropanol molecule has been found to bind in one of the hydrophobic crevices. Overall, the surface topology (shape and electrostatic potential) of the combining site is consistent with the binding data on TrkA ECD serial deletions mutants. The structure of the MNAC13 Fab fragment may assist in the rational structure-based design of high affinity humanized forms of MNAC13, appropriate for therapeutic approaches in neuropathy and inflammatory pain states.


Assuntos
Anticorpos Monoclonais/química , Fator de Crescimento Neural/química , Proteínas/química , Receptor trkA/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Sítios de Ligação de Anticorpos , Fenômenos Bioquímicos , Bioquímica , Clonagem Molecular , Biologia Computacional , Cristalografia por Raios X , Ensaio de Imunoadsorção Enzimática , Mapeamento de Epitopos , Epitopos/química , Escherichia coli/metabolismo , Deleção de Genes , Fragmentos Fab das Imunoglobulinas/química , Cinética , Camundongos , Modelos Moleculares , Conformação Molecular , Dados de Sequência Molecular , Mutação , Biblioteca de Peptídeos , Ligação Proteica , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Receptor de Fator de Crescimento Neural/química , Eletricidade Estática , Ressonância de Plasmônio de Superfície , Raios X
16.
Proc Natl Acad Sci U S A ; 100(15): 8927-32, 2003 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-12853577

RESUMO

Infection by HIV-1 causes persistent, long-term high virus production in macrophages. Major evidence, both in humans and in primate models, shows the crucial role of macrophages in sustaining virus production and in mediating a cytopathic effect on bystander CD4+ T lymphocytes and neuronal cells. In the present study, we used severe combined immunodeficient (SCID) mice engrafted with human peripheral blood lymphocytes (hu-PBL-SCID mice) to investigate the in vivo effect of HIV-1-infected macrophages on virus spread and CD4+ T lymphocyte depletion, and the ability of a mAb against nerve growth factor (NGF, a neurokine essential for the survival of HIV-1-infected macrophages) to suppress the pathogenetic events mediated by infected macrophages. Injection of mice with as few as 500 HIV-exposed macrophages causes (i) complete depletion of several millions of autologous CD4+ T lymphocytes, (ii) sustained HIV viremia, and (iii) spreading of HIV-1 DNA in mouse lymphoid organs. In contrast, in vivo treatment with an anti-NGF Ab completely abrogates all effects mediated by HIV-infected macrophages. Taken together, the results demonstrate the remarkable power of macrophages in sustaining in vivo HIV-1 infection, and that such a phenomenon can be specifically abrogated by an anti-NGF Ab. This may open new perspectives of experimental approaches aimed at selectively eliminating persistently infected macrophages from the bodies of HIV-infected patients.


Assuntos
Infecções por HIV/prevenção & controle , Fator de Crescimento Neural/antagonistas & inibidores , Animais , Anticorpos Monoclonais/farmacologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Infecções por HIV/etiologia , Infecções por HIV/imunologia , HIV-1 , Humanos , Transfusão de Linfócitos , Linfopenia/prevenção & controle , Macrófagos/imunologia , Macrófagos/virologia , Camundongos , Camundongos SCID , Fator de Crescimento Neural/imunologia , Testes de Neutralização , Transplante Heterólogo , Viremia/etiologia , Viremia/imunologia , Viremia/prevenção & controle
17.
Neuroreport ; 13(10): 1369-73, 2002 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-12151805

RESUMO

In this study we report the expression of TrkA receptor within the rat visual cortex during postnatal development and in adulthood, using a specific monoclonal antibody which recognizes the extracellular domain of TrkA receptor. TrkA was not detected by immunohistochemistry at postnatal day 13 (P13), i.e. before eye opening. At P22 TrkA was mostly localised in cortical fibre-like processes. At P39 and P90, TrkA-positive neuronal cell bodies in supragranular and infragranular layers were found. Using double immunohistochemistry, labelled cells were identified as intrinsic cholinergic neurones, and as interneurones expressing calbindin and neuropeptide Y. We conclude that TrkA is expressed in visual cortical neurones during postnatal development and in adulthood and that its pattern of expression is developmentally regulated.


Assuntos
Neurônios/química , Receptor trkA/análise , Córtex Visual/citologia , Fatores Etários , Animais , Anticorpos Monoclonais , Especificidade de Anticorpos , Período Crítico Psicológico , Imuno-Histoquímica , Ratos , Ratos Wistar , Receptor trkA/imunologia , Córtex Visual/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA