Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 10(8): e2206437, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36646499

RESUMO

The last 20 years have seen many publications investigating porous solids for gas adsorption and separation. The abundance of adsorbent materials (this work identifies 1608 materials for CO2 /N2 separation alone) provides a challenge to obtaining a comprehensive view of the field, identifying leading design strategies, and selecting materials for process modeling. In 2021, the empirical bound visualization technique was applied, analogous to the Robeson upper bound from membrane science, to alkane/alkene adsorbents. These bound visualizations reveal that adsorbent materials are limited by design trade-offs between capacity, selectivity, and heat of adsorption. The current work applies the bound visualization to adsorbents for a wider range of gas pairs, including CO2 , N2 , CH4 , H2 , Xe, O2 , and Kr. How this visual tool can identify leading materials and place new material discoveries in the context of the wider field is presented. The most promising current strategies for breaking design trade-offs are discussed, along with reproducibility of published adsorption literature, and the limitations of bound visualizations. It is hoped that this work inspires new materials that push the bounds of traditional trade-offs while also considering practical aspects critical to the use of materials on an industrial scale such as cost, stability, and sustainability.

2.
Chem Commun (Camb) ; 57(57): 6950-6959, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34159980

RESUMO

The last 20 years has seen an explosion in the number of publications investigating porous solids for gas adsorption and separation. The combination of external drivers such as anthropogenic climate change and industrial efficiency has been coupled with discovery of new materials such as synthetic zeolites, metal-organic frameworks, covalent organic frameworks, and non-porous adsorbents. Numerous reviews catalogue these materials and their properties. However, the field lacks a unifying resource to visually compare and analyse materials properties with regard to their utility as a scientific advance and potential for industrial use. In the related field of membrane science, the 'Robeson upper bound' empirically describes the trade-off between gas permeability and selectivity and has become a ubiquitous tool for comparing membrane materials. In this article, we propose upper and lower bounds that empirically correlate the trade-offs encountered when designing adsorbent materials for gas separation, specifically: capacity, selectivity, and heat of adsorption. We apply bound visualizations to adsorbents studied for light alkene/alkane separations and highlight their use in identifying candidate materials for examination within process models and for guiding insights to the most effective materials design strategies. Furthermore, we note the limitations of upper and lower bound visualizations and provide links to a database resource for researchers to produce and download bound visualization plots. We anticipate that introducing bound visualizations to the field of adsorbents for gas separations will allow researchers to provide context for the importance of new materials discoveries, understand trade-offs in adsorbent design, and connect process engineers with candidate materials.

3.
Membranes (Basel) ; 9(6)2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-31197088

RESUMO

Elemental sulfur was formed into poly(ether sulfone)-supported thin-films (ca. 10 µm) via a melt-casting process. Observed permeabilities of C2H4, CO2, H2, He, and N2 through the sulphur thin-films were <1 barrer. The sulfur thin-films were observed to age over a period of ca. 15 days, related to the reversion of polymerized sulfur to the S8 allotrope. This structural conversion was observed to correlate with an increase in the permeability of all gases.

4.
Angew Chem Int Ed Engl ; 57(50): 16442-16446, 2018 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-30328650

RESUMO

The trinuclear copper(I) pyrazolate complex [Cu3 ] rearranges to the dinuclear analogue [Cu2 ⋅(C2 H4 )2 ] when exposed to ethylene gas. Remarkably, the [Cu3 ]↔[Cu2 ⋅(C2 H4 )2 ] rearrangement occurs reversibly in the solid state. Furthermore, this transformation emulates solution chemistry. The bond-making and breaking processes associated with the rearrangement in the solid-state result in an observed heat of adsorption (-13±1 kJ mol-1 per Cu-C2 H4 interaction) significantly lower than other Cu-C2 H4 interactions (≥-24 kJ mol-1 ). The low overall heat of adsorption, "step" isotherms, high ethylene capacity (2.76 mmol g-1 ; 7.6 wt % at 293 K), and high ethylene/ethane selectivity (136:1 at 293 K) make [Cu3 ] an interesting basis for the rational design of materials for low-energy ethylene/ethane separations.

5.
Acc Chem Res ; 49(4): 724-32, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27046045

RESUMO

The recycling or sequestration of carbon dioxide (CO2) from the waste gas of fossil-fuel power plants is widely acknowledged as one of the most realistic strategies for delaying or avoiding the severest environmental, economic, political, and social consequences that will result from global climate change and ocean acidification. For context, in 2013 coal and natural gas power plants accounted for roughly 31% of total U.S. CO2 emissions. Recycling or sequestering this CO2 would reduce U.S. emissions by ca. 1800 million metric tons-easily meeting the U.S.'s currently stated CO2 reduction targets of ca. 17% relative to 2005 levels by 2020. This situation is similar for many developed and developing nations, many of which officially target a 20% reduction relative to 1990 baseline levels by 2020. To make CO2 recycling or sequestration processes technologically and economically viable, the CO2 must first be separated from the rest of the waste gas mixture-which is comprised mostly of nitrogen gas and water (ca. 85%). Of the many potential separation technologies available, membrane technology is particularly attractive due to its low energy operating cost, low maintenance, smaller equipment footprint, and relatively facile retrofit integration with existing power plant designs. From a techno-economic standpoint, the separation of CO2 from flue gas requires membranes that can process extremely high amounts of CO2 over a short time period, a property defined as the membrane "permeance". In contrast, the membrane's CO2/N2 selectivity has only a minor effect on the overall cost of some separation processes once a threshold permeability selectivity of ca. 20 is reached. Given the above criteria, the critical properties when developing membrane materials for postcombustion CO2 separation are CO2 permeability (i.e., the rate of CO2 transport normalized to the material thickness), a reasonable CO2/N2 selectivity (≥20), and the ability to be processed into defect-free thin-films (ca. 100-nm-thick active layer). Traditional polymeric membrane materials are limited by a trade-off between permeability and selectivity empirically described by the "Robeson upper bound"-placing the desired membrane properties beyond reach. Therefore, the investigation of advanced and composite materials that can overcome the limitations of traditional polymeric materials is the focus of significant academic and industrial research. In particular, there has been substantial work on ionic-liquid (IL)-based materials due to their gas transport properties. This review provides an overview of our collaborative work on developing poly(ionic liquid)/ionic liquid (PIL/IL) ion-gel membrane technology. We detail developmental work on the preparation of PIL/IL composites and describe how this chemical technology was adapted to allow the roll-to-roll processing and preparation of membranes with defect-free active layers ca. 100 nm thick, CO2 permeances of over 6000 GPU, and CO2/N2 selectivity of ≥20-properties with the potential to reduce the cost of CO2 removal from coal-fired power plant flue gas to ca. $15 per ton of CO2 captured. Additionally, we examine the materials developments that have produced advanced PIL/IL composite membranes. These advancements include cross-linked PIL/IL blends, step-growth PIL/IL networks with facilitated transport groups, and PIL/IL composites with microporous additives for CO2/CH4 separations.

6.
Inorg Chem ; 53(22): 12076-83, 2014 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-25274042

RESUMO

Activation of the secondary assembly instructions in the mononuclear pyrazine imide complexes [Co(III)(dpzca)2](BF4) or [Co(II)(dpzca)2] and [Ni(II)(dpzca)2] has facilitated the construction of two robust nanoporous three-dimensional coordination polymers, [Co(III)(dpzca)2Ag](BF4)2·2(H2O) [1·2(H2O)] and [Ni(II)(dpzca)2Ag]BF4·0.5(acetone) [2·0.5(acetone)]. Despite the difference in charge distribution and anion loading, the framework structures of 1·2(H2O) and 2·0.5(acetone) are isostructural. One dimensional channels along the b-axis permeate the structures and contain the tetrafluoroborate counterions (the Co(III)-based MOF has twice as many BF4(-) anions as the Ni(II)-based MOF) and guest solvent molecules. These anions are not readily exchanged whereas the solvent molecules can be reversibly removed and replaced. The H2, N2, CO2, CH4, H2O, CH3OH, and CH3CN sorption behaviors of the evacuated frameworks 1 and 2 at 298 K have been studied, and modeled, and both show very high selectivity for CO2 over N2. The increased anion loading in the channels of Co(III)-based MOF 1 relative to Ni(II)-based MOF 2 results in increased selectivity for CO2 over N2 but a decrease in the sorption kinetics and storage capacity of the framework.

7.
Chem Commun (Camb) ; 50(43): 5745-7, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24752375

RESUMO

We report a non-porous silver(i) coordinated phenanthroline-based polymer, which exhibits a high ideal ethylene/ethane adsorption selectivity (15/1) and high ethylene uptake (5.0 mmol g(-1)) at ambient temperature and pressure. Both silver(i) coordination and polymer structures are important for the high uptake of ethylene.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA