Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proteoglycan Res ; 2(3): e70001, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39290872

RESUMO

Peptides that increase pro-reparative responses to injury and disease by modulating the functional organization of hyaluronan (HA) with its cell surface binding proteins (e.g., soluble receptor for hyaluronan-mediated motility [RHAMM] and integral membrane CD44) have potential therapeutic value. The binding of RHAMM to HA is an attractive target, since RHAMM is normally absent or expressed at low levels in homeostatic conditions, but its expression is significantly elevated in the extracellular matrix during tissue stress, response-to-injury, and in cancers and inflammation-based diseases. The HA-binding site in RHAMM contains two closely spaced sequences of clustered basic amino acids, in an alpha-helical conformation. In the present communication, we test whether an alpha-helical conformation is required for effective peptide binding to HA, and competitive disruption of HA-RHAMM interaction. The HA-binding RHAMM-competitive peptide P15-1, identified using the unbiased approach of phage display, was examined using circular dichroism spectroscopy and the conformation-predictive AI-based AlphaFold2 algorithm. Unlike the HA-binding site in RHAMM, peptide P15-1 was found to adopt irregular conformations in solution rather than alpha helices. Instead, our structural analysis suggests that the primary determinant of peptide-HA binding is associated with a specific clustering and spacing pattern of basic amino acids, allowing favorable electrostatic interaction with carboxylate groups on HA.

2.
Am J Pathol ; 194(6): 1047-1061, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38403161

RESUMO

Hyaluronan (HA), a negatively charged linear glycosaminoglycan, is a key macromolecular component of the articular cartilage extracellular matrix. The differential effects of HA are determined by a spatially/temporally regulated display of HA receptors, such as CD44 and receptor for hyaluronan-mediated motility (RHAMM). HA signaling through CD44 with RHAMM has been shown to stimulate inflammation and fibrotic processes. This study shows an increased expression of RHAMM in proinflammatory macrophages. Interfering with HA/RHAMM interactions using a 15-mer RHAMM-mimetic, HA-binding peptide, together with high-molecular-weight (HMW) HA reduced the expression and release of inflammatory markers and increased the expression of anti-inflammatory markers in proinflammatory macrophages. HA/RHAMM interactions were interfered in vivo during the regeneration of a full-thickness cartilage defect after microfracture surgery in rabbits using three intra-articular injections of 15-mer RHAMM-mimetic. HA-binding peptide together with HMWHA reduced the number of proinflammatory macrophages and increased the number of anti-inflammatory macrophages in the injured knee joint and greatly improved the repair of the cartilage defect compared with intra-articular injections of HMWHA alone. These findings suggest that HA/RHAMM interactions play a key role in cartilage repair/regeneration via stimulating inflammatory and fibrotic events, including increasing the ratio of proinflammatory/anti-inflammatory macrophages. Interfering with these interactions reduced inflammation and greatly improved cartilage repair.


Assuntos
Cartilagem Articular , Receptores de Hialuronatos , Ácido Hialurônico , Macrófagos , Animais , Receptores de Hialuronatos/metabolismo , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Coelhos , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Ácido Hialurônico/metabolismo , Ácido Hialurônico/farmacologia , Proteínas da Matriz Extracelular/metabolismo , Polaridade Celular/efeitos dos fármacos , Polaridade Celular/fisiologia , Regeneração/efeitos dos fármacos , Regeneração/fisiologia , Inflamação/metabolismo , Inflamação/patologia
3.
Front Mol Biosci ; 9: 990861, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275631

RESUMO

The size, conformation, and organization of the glycosaminoglycan hyaluronan (HA) affect its interactions with soluble and cell surface-bound proteins. HA that is induced to form stable networks has unique biological properties relative to unmodified soluble HA. AlphaLISA assay technology offers a facile and general experimental approach to assay protein-mediated networking of HA in solution. Connections formed between two end-biotinylated 50 kDa HA (bHA) chains can be detected by signal arising from streptavidin-coated donor and acceptor beads being brought into close proximity when the bHA chains are bridged by proteins. We observed that incubation of bHA with the protein TSG-6 (tumor necrosis factor alpha stimulated gene/protein 6, TNFAIP/TSG-6) leads to dimerization or higher order multimerization of HA chains in solution. We compared two different heparin (HP) samples and two heparan sulfate (HS) samples for the ability to disrupt HA crosslinking by TSG-6. Both HP samples had approximately three sulfates per disaccharide, and both were effective in inhibiting HA crosslinking by TSG-6. HS with a relatively high degree of sulfation (1.75 per disaccharide) also inhibited TSG-6 mediated HA networking, while HS with a lower degree of sulfation (0.75 per disaccharide) was less effective. We further identified Proteoglycan 4 (PRG4, lubricin) as a TSG-6 ligand, and found it to inhibit TSG-6-mediated HA crosslinking. The effects of HP, HS, and PRG4 on HA crosslinking by TSG-6 were shown to be due to HP/HS/PRG4 inhibition of HA binding to the Link domain of TSG-6. Using the AlphaLISA platform, we also tested other HA-binding proteins for ability to create HA networks. The G1 domain of versican (VG1) effectively networked bHA in solution but required a higher concentration than TSG-6. Cartilage link protein (HAPLN1) and the HA binding protein segment of aggrecan (HABP, G1-IGD-G2) showed only low and variable magnitude HA networking effects. This study unambiguously demonstrates HA crosslinking in solution by TSG-6 and VG1 proteins, and establishes PRG4, HP and highly sulfated HS as modulators of TSG-6 mediated HA crosslinking.

4.
Bioengineering (Basel) ; 9(4)2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35447719

RESUMO

Hyaluronan (HA) has complex biological roles that have catalyzed clinical interest in several fields of medicine. In this narrative review, we provide an overview of HA aggregation, also called densification, in human organs. The literature suggests that HA aggregation can occur in the liver, eye, lung, kidney, blood vessel, muscle, fascia, skin, pancreatic cancer and malignant melanoma. In all these organs, aggregation of HA leads to an increase in extracellular matrix viscosity, causing stiffness and organ dysfunction. Fibrosis, in some of these organs, may also occur as a direct consequence of densification in the long term. Specific imaging evaluation, such dynamic ultrasonography, elasto-sonography, elasto-MRI and T1ρ MRI can permit early diagnosis to enable the clinician to organize the treatment plan and avoid further progression of the pathology and dysfunction.

5.
J Autoimmun ; 124: 102713, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34390919

RESUMO

Despite the existence of potent anti-inflammatory biological drugs e.g., anti-TNF and anti IL-6 receptor antibodies, for treating chronic inflammatory and autoimmune diseases, these are costly and not specific. Cheaper oral available drugs remain an unmet need. Expression of the acute phase protein Serum Amyloid A (SAA) is dependent on release of pro-inflammatory cytokines IL-1, IL-6 and TNF-α during inflammation. Conversely, SAA induces pro-inflammatory cytokine secretion, including Th17, leading to a pathogenic vicious cycle and chronic inflammation. 5- MER peptide (5-MP) MTADV (methionine-threonine-alanine-aspartic acid-valine), also called Amilo-5MER, was originally derived from a sequence of a pro-inflammatory CD44 variant isolated from synovial fluid of a Rheumatoid Arthritis (RA) patient. This human peptide displays an efficient anti-inflammatory effects to ameliorate pathology and clinical symptoms in mouse models of RA, Inflammatory Bowel Disease (IBD) and Multiple Sclerosis (MS). Bioinformatics and qRT-PCR revealed that 5-MP, administrated to encephalomyelytic mice, up-regulates genes contributing to chronic inflammation resistance. Mass spectrometry of proteins that were pulled down from an RA synovial cell extract with biotinylated 5-MP, showed that it binds SAA. 5-MP disrupted SAA assembly, which is correlated with its pro-inflammatory activity. The peptide MTADV (but not scrambled TMVAD) significantly inhibited the release of pro-inflammatory cytokines IL-6 and IL-1ß from SAA-activated human fibroblasts, THP-1 monocytes and peripheral blood mononuclear cells. 5-MP suppresses the pro-inflammatory IL-6 release from SAA-activated cells, but not from non-activated cells. 5-MP could not display therapeutic activity in rats, which are SAA deficient, but does inhibit inflammations in animal models of IBD and MS, both are SAA-dependent, as shown by others in SAA knockout mice. In conclusion, 5-MP suppresses chronic inflammation in animal models of RA, IBD and MS, which are SAA-dependent, but not in animal models, which are SAA-independent.


Assuntos
Artrite Reumatoide/imunologia , Receptores de Hialuronatos/genética , Inflamação/imunologia , Doenças Inflamatórias Intestinais/imunologia , Esclerose Múltipla/imunologia , Peptídeos/genética , Proteína Amiloide A Sérica/imunologia , Animais , Anti-Inflamatórios/uso terapêutico , Autoimunidade , Células Cultivadas , Biologia Computacional , Citocinas/metabolismo , Modelos Animais de Doenças , Humanos , Mediadores da Inflamação/metabolismo , Camundongos , Camundongos Knockout , Peptídeos/uso terapêutico , Proteína Amiloide A Sérica/genética
6.
Int J Mol Sci ; 22(13)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209086

RESUMO

Mesenchymal stem cells (MSCs) obtained from various sources, including bone marrow, have been proposed as a therapeutic strategy for the improvement of tissue repair/regeneration, including the repair of cartilage defects or lesions. Often the highly inflammatory environment after injury or during diseases, however, greatly diminishes the therapeutic and reparative effectiveness of MSCs. Therefore, the identification of novel factors that can protect MSCs against an inflammatory environment may enhance the effectiveness of these cells in repairing tissues, such as articular cartilage. In this study, we investigated whether a peptide (P15-1) that binds to hyaluronan (HA), a major component of the extracellular matrix of cartilage, protects bone-marrow-derived MSCs (BMSCs) in an inflammatory environment. The results showed that P15-1 reduced the mRNA levels of catabolic and inflammatory markers in interleukin-1beta (IL-1ß)-treated human BMSCs. In addition, P15-1 enhanced the attachment of BMSCs to HA-coated tissue culture dishes and stimulated the chondrogenic differentiation of the multipotential murine C3H/10T1/2 MSC line in a micromass culture. In conclusion, our findings suggest that P15-1 may increase the capacity of BMSCs to repair cartilage via the protection of these cells in an inflammatory environment and the stimulation of their attachment to an HA-containing matrix and chondrogenic differentiation.


Assuntos
Anti-Inflamatórios/farmacologia , Proteínas da Matriz Extracelular/química , Receptores de Hialuronatos/química , Ácido Hialurônico/metabolismo , Interleucina-1beta/efeitos adversos , Células-Tronco Mesenquimais/citologia , Peptídeos/farmacologia , Animais , Anti-Inflamatórios/química , Técnicas de Cultura de Células , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Condrogênese , Ciclo-Oxigenase 2/genética , Regulação da Expressão Gênica , Humanos , Interleucina-6/genética , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Metaloproteases/genética , Camundongos , Peptídeos/química
7.
J Thorac Cardiovasc Surg ; 156(4): 1598-1608.e1, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29859675

RESUMO

OBJECTIVE: Intrapericardial fibrous adhesions increase the risk of sternal reentry. Proteoglycan 4/lubricin (PRG4) is a mucin-like glycoprotein that lubricates tissue compartments and prevents inflammation. We characterized PRG4 expression in human pericardium and examined its effects in vitro on human cardiac myofibroblast fibrotic activity and in vivo as a measure of its therapeutic potential to prevent adhesions. METHODS: Full-length PRG4 expression was determined using Western blot analysis and amplified luminescent proximity homogeneous assay in human pericardial tissues obtained at cardiotomy. The in vitro effects of PRG4 were investigated on human cardiac myofibroblasts for cell adhesion, collagen gel contraction, and cell-mediated extracellular matrix remodeling. The influence of PRG4 on pericardial homeostasis was determined in a chronic porcine animal model. RESULTS: PRG4 is expressed in human pericardial fluid and colocalized with pericardial mesothelial cells. Recombinant human PRG4 prevented human cardiac myofibroblast attachment and reduced myofibroblast activity assessed using collagen gel contraction assay (64.6% ± 8.1% vs 47.1% ± 6.8%; P = .02). Using a microgel assay, human cardiac myofibroblast mediated collagen fiber remodeling was attenuated by PRG4 (1.17 ± 0.03 vs 0.90 ± 0.05; P = .002). In vivo, removal of pericardial fluid alone induced severe intrapericardial adhesion formation, tissue thickening, and inflammatory fluid collections. Restoration of intrapericardial PRG4 was protective against fibrous adhesions and preserved the pericardial space. CONCLUSIONS: For the first time, we show that PRG4 is expressed in human pericardial fluid and regulates local fibrotic myofibroblast activity. Loss of PRG4-enriched pericardial fluid after cardiotomy might induce adhesion formation. Therapeutic restoration of intrapericardial PRG4 might prevent fibrous/inflammatory adhesions and reduce the risk of sternal reentry.


Assuntos
Miofibroblastos/efeitos dos fármacos , Pericárdio/efeitos dos fármacos , Proteoglicanas/farmacologia , Doenças Torácicas/prevenção & controle , Animais , Adesão Celular/efeitos dos fármacos , Células Cultivadas , Colágeno/metabolismo , Modelos Animais de Doenças , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Humanos , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Líquido Pericárdico/metabolismo , Pericárdio/metabolismo , Pericárdio/patologia , Proteoglicanas/metabolismo , Sus scrofa , Doenças Torácicas/metabolismo , Doenças Torácicas/patologia , Aderências Teciduais
8.
Bio Protoc ; 8(13): e2915, 2018 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34395744

RESUMO

The mammary gland undergoes extensive remodeling during pregnancy and is also subject to neoplastic processes both of which result in histological changes of the gland epithelial structure. Since the mammary tree is a complex three-dimensional structure a method is needed that provides an overview of the entire gland. Whole mounts provide this information, are inexpensive and do not require specialized equipment. This protocol describes mammary gland isolation, whole mount preparation and analysis. Mammary gland tissue, which is removed postmortem, is stained with Carmine Alum, a nuclear stain, allowing detection of epithelial structures embedded in the adipose tissue of the mammary fat pad. Stained mammary glands are imaged by light microscopy or embedded and sectioned for histological examination. Image analysis software such as Image J can be used to quantify extensity of branching complexity, epithelial structure remodeling or hyperplastic changes.

9.
Matrix Biol ; 63: 117-132, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28232112

RESUMO

Mammary gland morphogenesis begins during fetal development but expansion of the mammary tree occurs postnatally in response to hormones, growth factors and extracellular matrix. Hyaluronan (HA) is an extracellular matrix polysaccharide that has been shown to modulate growth factor-induced branching in culture. Neither the physiological relevance of HA to mammary gland morphogenesis nor the role that HA receptors play in these responses are currently well understood. We show that HA synthase (HAS2) is expressed in both ductal epithelia and stromal cells but HA primarily accumulates in the stroma. HA accumulation and expression of the HA receptors CD44 and RHAMM are highest during gestation when gland remodeling, lateral branch infilling and lobulo-alveoli formation is active. Molecular weight analyses show that approximately 98% of HA at all stages of morphogenesis is >300kDa. Low levels of 7-114kDa HA fragments are also detected and in particular the accumulation of 7-21kDa HA fragments are significantly higher during gestation than other morphogenetic stages (p<0.05). Using these in vivo results as a guide, in culture analyses of mammary epithelial cell lines (EpH4 and NMuMG) were performed to determine the roles of high molecular weight, 7-21kDa (10kDa MWavg) and HA receptors in EGF-induced branching morphogenesis. Results of these assays show that while HA synthesis is required for branching and 10kDa HA fragments strongly stimulate branching, the activity of HA decreases with increasing molecular weight and 500kDa HA strongly inhibits this morphogenetic process. The response to 10kDa HA requires RHAMM function and genetic deletion of RHAMM transiently blunts lateral branching in vivo. Collectively, these results reveal distinct roles for HA polymer size in modulating growth factor induced mammary gland branching and implicates these polymers in both the expansion and sculpting of the mammary tree during gestation.


Assuntos
Fator de Crescimento Epidérmico/fisiologia , Ácido Hialurônico/fisiologia , Glândulas Mamárias Animais/crescimento & desenvolvimento , Animais , Linhagem Celular , Células Epiteliais/fisiologia , Proteínas da Matriz Extracelular/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Receptores de Hialuronatos/metabolismo , Ácido Hialurônico/química , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/ultraestrutura , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peso Molecular , Morfogênese , Gravidez , Estrutura Quaternária de Proteína , Maturidade Sexual
10.
Front Immunol ; 6: 236, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26106384

RESUMO

Breast cancer-induced inflammation in the tumor reactive stroma supports invasion and malignant progression and is contributed to by a variety of host cells including macrophages and fibroblasts. Inflammation appears to be initiated by tumor cells and surrounding host fibroblasts that secrete pro-inflammatory cytokines and chemokines and remodel the extracellular matrix (ECM) to create a pro-inflammatory "cancerized" or tumor reactive microenvironment that supports tumor expansion and invasion. The tissue polysaccharide hyaluronan (HA) is an example of an ECM component within the cancerized microenvironment that promotes breast cancer progression. Like many ECM molecules, the function of native high-molecular weight HA is altered by fragmentation, which is promoted by oxygen/nitrogen free radicals and release of hyaluronidases within the tumor microenvironment. HA fragments are pro-inflammatory and activate signaling pathways that promote survival, migration, and invasion within both tumor and host cells through binding to HA receptors such as CD44 and RHAMM/HMMR. In breast cancer, elevated HA in the peri-tumor stroma and increased HA receptor expression are prognostic for poor outcome and are associated with disease recurrence. This review addresses the critical issues regarding tumor-induced inflammation and its role in breast cancer progression focusing specifically on the changes in HA metabolism within tumor reactive stroma as a key factor in malignant progression.

11.
Am J Pathol ; 181(4): 1250-70, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22889846

RESUMO

Hyaluronan is activated by fragmentation and controls inflammation and fibroplasia during wound repair and diseases (eg, cancer). Hyaluronan-binding peptides were identified that modify fibrogenesis during skin wound repair. Peptides were selected from 7- to 15mer phage display libraries by panning with hyaluronan-Sepharose beads and assayed for their ability to block fibroblast migration in response to hyaluronan oligosaccharides (10 kDa). A 15mer peptide (P15-1), with homology to receptor for hyaluronan mediated motility (RHAMM) hyaluronan binding sequences, was the most effective inhibitor. P15-1 bound to 10-kDa hyaluronan with an affinity of K(d) = 10(-7) and appeared to specifically mimic RHAMM since it significantly reduced binding of hyaluronan oligosaccharides to recombinant RHAMM but not to recombinant CD44 or TLR2,4, and altered wound repair in wild-type but not RHAMM(-/-) mice. One topical application of P15-1 to full-thickness excisional rat wounds significantly reduced wound macrophage number, fibroblast number, and blood vessel density compared to scrambled, negative control peptides. Wound collagen 1, transforming growth factor ß-1, and α-smooth muscle actin were reduced, whereas tenascin C was increased, suggesting that P15-1 promoted a form of scarless healing. Signaling/microarray analyses showed that P15-1 blocks RHAMM-regulated focal adhesion kinase pathways in fibroblasts. These results identify a new class of reagents that attenuate proinflammatory, fibrotic repair by blocking hyaluronan oligosaccharide signaling.


Assuntos
Proteínas da Matriz Extracelular/química , Receptores de Hialuronatos/química , Ácido Hialurônico/metabolismo , Inflamação/patologia , Peptídeos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Pele/patologia , Cicatrização/efeitos dos fármacos , Animais , Ligação Competitiva/efeitos dos fármacos , Contagem de Células , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Colágeno/biossíntese , Proteínas da Matriz Extracelular/deficiência , Proteínas da Matriz Extracelular/metabolismo , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose , Humanos , Receptores de Hialuronatos/metabolismo , Inflamação/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Peso Molecular , Neovascularização Patológica/patologia , Peptídeos/isolamento & purificação , Peptídeos/metabolismo , Ligação Proteica/efeitos dos fármacos , Ratos , Proteínas Recombinantes/farmacologia , Pele/efeitos dos fármacos , Tenascina/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
12.
J Biol Chem ; 287(36): 30610-24, 2012 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-22761444

RESUMO

Hyaluronan (HA) is a glycosaminoglycan polymer found in the extracellular matrix of virtually all mammalian tissues. Recent work has suggested a role for small, fragmented HA polymers in initiating innate defense responses in immune cells, endothelium, and epidermis through interaction with innate molecular pattern recognition receptors, such as TLR4. Despite these advances, little is known regarding the effect of fragmented HA at the intestinal epithelium, where numerous pattern recognition receptors act as sentinels of an innate defense response that maintains epithelial barrier integrity in the presence of abundant and diverse microbial challenges. Here we report that HA fragments promote expression of the innate antimicrobial peptide human ß-defensin 2 (HßD2) in intestinal epithelial cells. Treatment of HT-29 colonic epithelial cells with HA fragment preparations resulted in time- and dose-dependent up-regulated expression of HßD2 protein in a fragment size-specific manner, with 35-kDa HA fragment preparations emerging as the most potent inducers of intracellular HßD2. Furthermore, oral administration of specific-sized HA fragments promotes the expression of an HßD2 ortholog in the colonic epithelium of both wild-type and CD44-deficient mice but not in TLR4-deficient mice. Together, our observations suggest that a highly size-specific, TLR4-dependent, innate defense response to fragmented HA contributes to intestinal epithelium barrier defense through the induction of intracellular HßD2 protein.


Assuntos
Colo/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Ácido Hialurônico/farmacologia , Mucosa Intestinal/metabolismo , beta-Defensinas/biossíntese , Animais , Linhagem Celular Tumoral , Colo/imunologia , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/imunologia , Humanos , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/imunologia , Receptores de Hialuronatos/metabolismo , Ácido Hialurônico/imunologia , Ácido Hialurônico/metabolismo , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/genética , Imunidade Inata/imunologia , Mucosa Intestinal/imunologia , Camundongos , Camundongos Mutantes , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/imunologia , Receptor 4 Toll-Like/metabolismo , beta-Defensinas/genética , beta-Defensinas/imunologia
13.
J Inorg Biochem ; 98(11): 1757-69, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15522403

RESUMO

Intravenous iron therapy is used to treat anemia associated with chronic kidney disease. The chemical structures of parenteral iron agents have not been characterized in detail, and correlations between structure, efficiency of iron delivery, and toxicity via catalysis of oxygen-derived free radical creation remain to be established. In this study, two formulations of parenteral iron have been characterized by absorption spectroscopy, X-ray diffraction analysis (XRD), transmission electron microscopy (TEM), atomic force microscopy (AFM), and elemental analysis. The samples studied were Venofer (Iron Sucrose Injection, USP) and Ferrlecit (Sodium Ferric Gluconate in Sucrose Injection). The 250-800-nm absorption spectra and the XRD patterns showed that both formulations contain a mineral core composed of iron oxyhydroxide in the beta-FeOOH mineral polymorph known as akaganeite. This was further confirmed for each formulation by imaging using TEM and AFM. The average core size for the nanoparticles, after dialysis to remove unbound or loosely bound carbohydrate, was approximately 3+/-2 nm for the iron-sucrose, and approximately 2+/-1 nm for the iron-gluconate. Each of the nanoparticles consists of a mineral core, surrounded by a layer of bound carbohydrate. The overall diameter of the average bead in the dialyzed preparations was approximately 7+/-4 nm for the iron-sucrose, and 3+/-1 nm for the iron-gluconate. Undialyzed preparations have particles with larger average sizes, depending on the extent of dilution of unbound and loosely bound carbohydrate. At a dilution corresponding to a final Fe concentration of 5 mg/mL, the average particle diameter in the iron-sucrose formulation was approximately 22+/-9 nm, whereas that of the iron-gluconate formulation was approximately 12+/-5 nm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA