Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4629, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38821950

RESUMO

The Paramyxoviridae family encompasses medically significant RNA viruses, including human respiroviruses 1 and 3 (RV1, RV3), and zoonotic pathogens like Nipah virus (NiV). RV3, previously known as parainfluenza type 3, for which no vaccines or antivirals have been approved, causes respiratory tract infections in vulnerable populations. The RV3 fusion (F) protein is inherently metastable and will likely require prefusion (preF) stabilization for vaccine effectiveness. Here we used structure-based design to stabilize regions involved in structural transformation to generate a preF protein vaccine antigen with high expression and stability, and which, by stabilizing the coiled-coil stem region, does not require a heterologous trimerization domain. The preF candidate induces strong neutralizing antibody responses in both female naïve and pre-exposed mice and provides protection in a cotton rat challenge model (female). Despite the evolutionary distance of paramyxovirus F proteins, their structural transformation and local regions of instability are conserved, which allows successful transfer of stabilizing substitutions to the distant preF proteins of RV1 and NiV. This work presents a successful vaccine antigen design for RV3 and provides a toolbox for future paramyxovirus vaccine design and pandemic preparedness.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Sigmodontinae , Proteínas Virais de Fusão , Vacinas Virais , Animais , Feminino , Proteínas Virais de Fusão/imunologia , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/química , Camundongos , Vacinas Virais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Humanos , Camundongos Endogâmicos BALB C , Infecções por Paramyxoviridae/prevenção & controle , Infecções por Paramyxoviridae/imunologia , Infecções por Paramyxoviridae/virologia , Vírus da Parainfluenza 3 Humana/imunologia , Vírus da Parainfluenza 3 Humana/genética
2.
Vaccines (Basel) ; 11(3)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36992257

RESUMO

RSV is divided into two antigenic subtypes, RSV A and RSV B, which is largely based on the variation in the G protein, while the fusion protein F is more conserved and a target for antibody-mediated neutralization. Here we evaluate the breadth of the protective immune responses across RSV A and RSV B subtypes, induced by vaccines based on the RSV A-based fusion protein, stabilized in the prefusion conformation (preF) in preclinical models. Immunization of naïve cotton rats with preF subunit or preF encoded by a replication incompetent Adenoviral 26, induced antibodies capable of neutralizing recent RSV A and RSV B clinical isolates, as well as protective efficacy against a challenge with RSV A and RSV B strains. Similarly, induction of cross-neutralizing antibodies was observed after immunization with Ad26-encoded preF, preF protein or a mix of both (Ad26/preF protein) in RSV pre-exposed mice and African Green Monkeys. Transfer of serum of human subjects immunized with Ad26/preF protein into cotton rats provide protection against challenges with both RSV A and RSV B, with complete protection against both strains observed in the lower respiratory tract. In contrast, almost no protection against RSV A and B infection was observed after the transfer of a human serum pool isolated pre-vaccination. These results collectively show that the RSV A-based monovalent Ad26/preF protein vaccine induced neutralizing antibodies, as well as protection against both RSV A and RSV B subtypes in animals, including by passive transfer of human antibodies alone, suggesting that clinical efficacy against both subtypes can be achieved.

3.
NPJ Vaccines ; 8(1): 45, 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36949051

RESUMO

Respiratory syncytial virus (RSV) is a leading cause of severe respiratory disease for which no licensed vaccine is available. We have previously shown that a prefusion (preF) conformation-stabilized RSV F protein antigen and an adenoviral vector encoding RSV preF protein (Ad26.RSV.preF) are immunogenic and protective in animals when administered as single components. Here, we evaluated a combination of the 2 components, administered as a single injection. Strong induction of both humoral and cellular responses was shown in RSV-naïve and pre-exposed mice and pre-exposed African green monkeys (AGMs). Both components of the combination vaccine contributed to humoral immune responses, while the Ad26.RSV.preF component was the main contributor to cellular immune responses in both mice and AGMs. Immunization with the combination elicited superior protection against RSV A2 challenge in cotton rats. These results demonstrate the advantage of a combination vaccine and support further clinical development.

4.
Ann Intern Med ; 174(5): 585-594, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33587687

RESUMO

BACKGROUND: Zika virus (ZIKV) may cause severe congenital disease after maternal-fetal transmission. No vaccine is currently available. OBJECTIVE: To assess the safety and immunogenicity of Ad26.ZIKV.001, a prophylactic ZIKV vaccine candidate. DESIGN: Phase 1 randomized, double-blind, placebo-controlled clinical study. (ClinicalTrials.gov: NCT03356561). SETTING: United States. PARTICIPANTS: 100 healthy adult volunteers. INTERVENTION: Ad26.ZIKV.001, an adenovirus serotype 26 vector encoding ZIKV M-Env, administered in 1- or 2-dose regimens of 5 × 1010 or 1 × 1011 viral particles (vp), or placebo. MEASUREMENTS: Local and systemic adverse events; neutralization titers by microneutralization assay (MN50) and T-cell responses by interferon-γ enzyme-linked immunospot and intracellular cytokine staining; and protectivity of vaccine-induced antibodies in a subset of participants through transfer in an exploratory mouse ZIKV challenge model. RESULTS: All regimens were well tolerated, with no safety concerns identified. In both 2-dose regimens, ZIKV neutralizing titers peaked 14 days after the second vaccination, with geometric mean MN50 titers (GMTs) of 1065.6 (95% CI, 494.9 to 2294.5) for 5 × 1010 vp and 956.6 (595.8 to 1535.8) for 1 × 1011 vp. Titers persisted for at least 1 year at a GMT of 68.7 (CI, 26.4-178.9) for 5 × 1010 vp and 87.0 (CI, 29.3 to 258.6) for 1 × 1011 vp. A 1-dose regimen of 1 × 1011 vp Ad26.ZIKV.001 induced seroconversion in all participants 56 days after the first vaccination (GMT, 103.4 [CI, 52.7 to 202.9]), with titers persisting for at least 1 year (GMT, 90.2 [CI, 38.4 to 212.2]). Env-specific cellular responses were induced. Protection against ZIKV challenge was observed after antibody transfer from participants into mice, and MN50 titers correlated with protection in this model. LIMITATION: The study was conducted in a nonendemic area, so it did not assess safety and immunogenicity in a flavivirus-exposed population. CONCLUSION: The safety and immunogenicity profile makes Ad26.ZIKV.001 a promising candidate for further development if the need reemerges. PRIMARY FUNDING SOURCE: Janssen Vaccines and Infectious Diseases.


Assuntos
Vacinas Virais/imunologia , Infecção por Zika virus/prevenção & controle , Adenoviridae/imunologia , Adulto , Animais , Método Duplo-Cego , Feminino , Humanos , Masculino , Camundongos , Estados Unidos , Zika virus/imunologia , Infecção por Zika virus/imunologia
5.
PLoS One ; 13(8): e0202820, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30142207

RESUMO

In 2015, there was a large outbreak of Zika virus (ZIKV) in Brazil. Despite its relatively mild impact on healthy adults, ZIKV infection during pregnancy has been associated with severe birth defects. Currently, there is no ZIKV vaccine available, but several vaccine candidates based on the ZIKV membrane (M) and envelope (Env) structural proteins showed promising results in preclinical and clinical studies. Here, the immunogenicity and protective efficacy of a non-replicating adenoviral vector type 26 (Ad26) that encodes the ZIKV M-Env antigens (Ad26.ZIKV.M-Env) was evaluated in mice and non-human primates (NHP). Ad26.ZIKV.M-Env induced strong and durable cellular and humoral immune responses in preclinical models. Humoral responses were characterized by Env-binding and ZIKV neutralizing antibody responses while cellular responses were characterized by ZIKV reactive CD4+ and CD8+ T cells. Importantly, a single immunization with a very low dose of 4x107 vp of Ad26.ZIKV.M-Env protected mice from ZIKV challenge. In NHP, a single immunization with a typical human dose of 1x1011 vp of Ad26.ZIKV.M-Env also induced Env-binding and ZIKV neutralizing antibodies and Env and M specific cellular immune responses that associated with complete protection against viremia from ZIKV challenge as measured in plasma and other body fluids. Together these data provide the rationale to progress the Ad26.ZIKV.M-Env candidate vaccine to clinical testing.


Assuntos
Adenoviridae/genética , Antígenos Virais/genética , Imunidade Celular , Imunidade Humoral , Zika virus/patogenicidade , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Antígenos Virais/imunologia , Antígenos Virais/metabolismo , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Vetores Genéticos/metabolismo , Interferon gama/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Primatas , Vacinação , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/metabolismo , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/imunologia , Proteínas da Matriz Viral/metabolismo , Zika virus/metabolismo , Infecção por Zika virus/prevenção & controle , Infecção por Zika virus/veterinária , Infecção por Zika virus/virologia
6.
PLoS Med ; 3(7): e237, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16796401

RESUMO

BACKGROUND: Experimental animal data show that protection against severe acute respiratory syndrome coronavirus (SARS-CoV) infection with human monoclonal antibodies (mAbs) is feasible. For an effective immune prophylaxis in humans, broad coverage of different strains of SARS-CoV and control of potential neutralization escape variants will be required. Combinations of virus-neutralizing, noncompeting mAbs may have these properties. METHODS AND FINDINGS: Human mAb CR3014 has been shown to completely prevent lung pathology and abolish pharyngeal shedding of SARS-CoV in infected ferrets. We generated in vitro SARS-CoV variants escaping neutralization by CR3014, which all had a single P462L mutation in the glycoprotein spike (S) of the escape virus. In vitro experiments confirmed that binding of CR3014 to a recombinant S fragment (amino acid residues 318-510) harboring this mutation was abolished. We therefore screened an antibody-phage library derived from blood of a convalescent SARS patient for antibodies complementary to CR3014. A novel mAb, CR3022, was identified that neutralized CR3014 escape viruses, did not compete with CR3014 for binding to recombinant S1 fragments, and bound to S1 fragments derived from the civet cat SARS-CoV-like strain SZ3. No escape variants could be generated with CR3022. The mixture of both mAbs showed neutralization of SARS-CoV in a synergistic fashion by recognizing different epitopes on the receptor-binding domain. Dose reduction indices of 4.5 and 20.5 were observed for CR3014 and CR3022, respectively, at 100% neutralization. Because enhancement of SARS-CoV infection by subneutralizing antibody concentrations is of concern, we show here that anti-SARS-CoV antibodies do not convert the abortive infection of primary human macrophages by SARS-CoV into a productive one. CONCLUSIONS: The combination of two noncompeting human mAbs CR3014 and CR3022 potentially controls immune escape and extends the breadth of protection. At the same time, synergy between CR3014 and CR3022 may allow for a lower total antibody dose to be administered for passive immune prophylaxis of SARS-CoV infection.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Antígenos Virais/imunologia , Imunização Passiva , Glicoproteínas de Membrana/imunologia , Síndrome Respiratória Aguda Grave/prevenção & controle , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , Proteínas do Envelope Viral/imunologia , Substituição de Aminoácidos , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Afinidade de Anticorpos , Especificidade de Anticorpos , Reações Antígeno-Anticorpo , Variação Antigênica , Sequência de Bases , Sítios de Ligação , Células Cultivadas/virologia , Chlorocebus aethiops , Surtos de Doenças , Relação Dose-Resposta Imunológica , Sinergismo Farmacológico , Epitopos/imunologia , Humanos , Soros Imunes , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/imunologia , Cadeias Leves de Imunoglobulina/genética , Cadeias Leves de Imunoglobulina/imunologia , Região Variável de Imunoglobulina/química , Região Variável de Imunoglobulina/imunologia , Macrófagos/virologia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/fisiologia , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Nandiniidae/virologia , Testes de Neutralização , Mutação Puntual , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/imunologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Síndrome Respiratória Aguda Grave/tratamento farmacológico , Síndrome Respiratória Aguda Grave/epidemiologia , Síndrome Respiratória Aguda Grave/terapia , Síndrome Respiratória Aguda Grave/virologia , Glicoproteína da Espícula de Coronavírus , Ressonância de Plasmônio de Superfície , Células Vero , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/fisiologia , Replicação Viral
7.
J Virol ; 79(3): 1635-44, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15650189

RESUMO

Human monoclonal antibodies (MAbs) were selected from semisynthetic antibody phage display libraries by using whole irradiated severe acute respiratory syndrome (SARS) coronavirus (CoV) virions as target. We identified eight human MAbs binding to virus and infected cells, six of which could be mapped to two SARS-CoV structural proteins: the nucleocapsid (N) and spike (S) proteins. Two MAbs reacted with N protein. One of the N protein MAbs recognized a linear epitope conserved between all published human and animal SARS-CoV isolates, and the other bound to a nonlinear N epitope. These two N MAbs did not compete for binding to SARS-CoV. Four MAbs reacted with the S glycoprotein, and three of these MAbs neutralized SARS-CoV in vitro. All three neutralizing anti-S MAbs bound a recombinant S1 fragment comprising residues 318 to 510, a region previously identified as the SARS-CoV S receptor binding domain; the nonneutralizing MAb did not. Two strongly neutralizing anti-S1 MAbs blocked the binding of a recombinant S fragment (residues 1 to 565) to SARS-CoV-susceptible Vero cells completely, whereas a poorly neutralizing S1 MAb blocked binding only partially. The MAb ability to block S1-receptor binding and the level of neutralization of the two strongly neutralizing S1 MAbs correlated with the binding affinity to the S1 domain. Finally, epitope mapping, using recombinant S fragments (residues 318 to 510) containing naturally occurring mutations, revealed the importance of residue N479 for the binding of the most potent neutralizing MAb, CR3014. The complete set of SARS-CoV MAbs described here may be useful for diagnosis, chemoprophylaxis, and therapy of SARS-CoV infection and disease.


Assuntos
Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Glicoproteínas de Membrana/imunologia , Proteínas do Nucleocapsídeo/imunologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , Proteínas do Envelope Viral/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/genética , Anticorpos Antivirais/química , Anticorpos Antivirais/genética , Anticorpos Antivirais/imunologia , Especificidade de Anticorpos , Sítios de Ligação , Chlorocebus aethiops , Proteínas do Nucleocapsídeo de Coronavírus , Mapeamento de Epitopos , Humanos , Dados de Sequência Molecular , Testes de Neutralização , Glicoproteína da Espícula de Coronavírus , Células Vero
8.
Eur J Cancer ; 41(1): 178-87, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15618003

RESUMO

Tumour-associated cell surface markers are potential targets for antibody-based therapies. We have obtained a panel of myeloid cell binding single chain variable fragments (scFv) by applying phage display selection on myeloid cell lines followed by a selection round on freshly isolated acute myeloid leukaemia (AML) blasts using flow cytometry. To identify the target antigens, the scFv were recloned and expressed in an IgG(1) format and tested for their ability to immunoprecipitate cell surface proteins. The IgGs that reacted with distinct cell membrane extractable proteins were used in large-scale affinity purification of the target antigen followed by mass-spectrometry-based identification. Well-characterised cell surface antigens, such as leukocyte antigen-related receptor protein tyrosine phosphatase (LAR PTP) and activated leukocyte adhesion molecule (ALCAM) in addition to several unknown proteins, like ATAD3A, were identified. These experiments demonstrate that phage antibody selection in combination with affinity chromatography and mass spectrometry can be exploited successfully to identify novel antibody target molecules on malignant cells.


Assuntos
Antígenos de Neoplasias/análise , Leucemia Mieloide/genética , Proteômica , Molécula de Adesão de Leucócito Ativado , Doença Aguda , Antígenos de Superfície/metabolismo , Bacteriófagos/metabolismo , Linhagem Celular Tumoral , Células Clonais , Citometria de Fluxo/métodos , Humanos , Imunoglobulina G/metabolismo , Leucócitos Mononucleares/metabolismo , Espectrometria de Massas , Células Mieloides/metabolismo , Transfecção
9.
Nucleic Acids Res ; 31(11): e59, 2003 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-12771223

RESUMO

Phage display is a widely used technology for the isolation of peptides and proteins with specific binding properties from large libraries of these molecules. A drawback of the common phagemid/helper phage systems is the high infective background of phages that do not display the protein of interest, but are propagated due to non-specific binding to selection targets. This and the enhanced growth rates of bacteria harboring aberrant phagemids not expressing recombinant proteins leads to a serious decrease in selection efficiency. Here we describe a VCSM13-derived helper phage that circumvents this problem, because it lacks the genetic information for the infectivity domains of phage coat protein pIII. Rescue of a library with this novel CT helper phage yields phages that are only infectious when they contain a phagemid-encoded pIII-fusion protein, since phages without a displayed protein carry truncated pIII only and are lost upon re-infection. Importantly, the CT helper phage can be produced in quantities similar to the VCSM13 helper phage. The superiority of CT over VCSM13 during selection was demonstrated by a higher percentage of positive clones isolated from an antibody library after two selection rounds on a complex cellular target. We conclude that the CT helper phage considerably improves the efficiency of selections using phagemid-based protein libraries.


Assuntos
Bacteriófagos/genética , Biblioteca de Peptídeos , Proteínas Recombinantes de Fusão/genética , Proteínas do Capsídeo , Proteínas de Ligação a DNA/genética , Humanos , Região Variável de Imunoglobulina/genética , Mutação , Técnicas de Amplificação de Ácido Nucleico , Células U937 , Proteínas Virais de Fusão/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA