RESUMO
INTRODUCTION: Tuberculosis (TB) is an important cause of morbidity and mortality among people living with HIV (PLHIV). Current WHO-recommended strategies for diagnosing TB among hospitalized PLHIV rely on symptom screening and disease severity to assess eligibility for urine lipoarabinomannan lateral flow (LF-LAM) and molecular testing. Despite these recommendations, autopsy studies show a large burden of undiagnosed TB among admitted PLHIV. The EXULTANT trial aims to assess the impact of an expanded screening strategy using three specimens (sputum, stool, and urine) for TB diagnosis among PLHIV admitted to hospitals in two high HIV and TB burden African countries. METHODS: This is a multicenter, pragmatic, individually randomized controlled trial conducted across eleven hospitals in Tanzania and Mozambique. Participants in the intervention arm will be tested with Xpert MTB/RIF Ultra® from expectorated sputum, stool, and urine samples, with additional urine LF-LAM testing in the first 24 h after hospital admission, irrespective of the presence of the symptoms. The control arm will implement the WHO standard of care recommendations. Hospitalized adults (≥ 18 years) with a confirmed HIV-diagnosis, irrespective of antiretroviral (ART) therapy status or presence of TB symptoms will be assessed for eligibility at admission. Patients with a pre-existing TB diagnosis, those receiving anti-tuberculosis therapy or tuberculosis preventive treatment in the 6 months prior to enrolment, and those transferred from other hospitals will not be eligible. Also, participants admitted for traumatic reasons such as acute abdomen, maternal conditions, scheduled surgery, having a positive SARS-CoV2 test will be ineligible. The primary endpoint is the proportion of participants with microbiologically confirmed TB starting treatment within 3 days of enrolment. DISCUSSION: The EXULTANT trial investigates rapid implementation after admission of a new diagnostic algorithm using Xpert MTB/RIF Ultra® in several non-invasive specimens, in addition to LF-LAM, in hospitalized PLHIV regardless of TB symptoms. This enhanced strategy is anticipated to detect frequently missed TB cases in this population and is being evaluated as an implementable and scalable intervention. TRIAL REGISTRATION: Trial reference number: NCT04568967 (ClinicalTrials.gov) registered on 2020-09-29.
Assuntos
Infecções por HIV , Tuberculose , Humanos , Moçambique , Tanzânia , Infecções por HIV/complicações , Adulto , Tuberculose/diagnóstico , Tuberculose/complicações , Tuberculose/tratamento farmacológico , Masculino , Feminino , Escarro/microbiologia , Lipopolissacarídeos/urina , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/isolamento & purificação , Mycobacterium tuberculosis/efeitos dos fármacos , Fezes/microbiologia , Fezes/virologia , HospitalizaçãoRESUMO
With some exceptions, global policymakers have recommended against the use of existing monoclonal antibodies in COVID-19 due to loss of neutralization of newer variants. The purpose of this study was to investigate the impact of Ronapreve on compartmental viral replication using paradigms for susceptible and insusceptible variants. Virological efficacy and impact on pathogenicity was assessed in K18-hACE2 mice inoculated with either the Delta or BA.1 Omicron variants. Ronapreve reduced sub-genomic viral RNA levels in lung and nasal turbinate, 4 and 6 days post-infection, for the Delta variant but not the Omicron variant. It also blocked brain infection, which is seen with high frequency in K18-hACE2 mice after Delta variant infection. At day 6, the inflammatory response to lung infection with the Delta variant was altered to a multifocal granulomatous inflammation in which the virus appeared to be confined. The current study provides evidence of an altered tissue response to SARS-CoV-2 after treatment with a monoclonal antibody combination that retains neutralization activity. These data demonstrate that experimental designs that reflect treatment use cases are achievable in animal models for monoclonal antibodies. Extreme caution should be taken when interpreting prophylactic experimental designs that may not be representative of treatment.IMPORTANCEFollowing the emergence of the SARS-CoV-2 Omicron variant, the WHO recommended against the use of Ronapreve in its COVID-19 treatment guidelines due to a lack of efficacy based on current pharmacokinetic-pharmacodynamic understanding. However, the continued use of Ronapreve, specifically in vulnerable patients, was advocated by some based on in vitro neutralization data. Here, the virological efficacy of Ronapreve was demonstrated in both the lung and brain compartments using Delta as a paradigm for a susceptible variant. Conversely, a lack of virological efficacy was demonstrated for the Omicron variant. Comparable concentrations of both monoclonal antibodies were observed in the plasma of Delta- and Omicron-infected mice. This study made use of a reliable murine model for SARS-CoV-2 infection, an experimental design reflective of treatment, and demonstrated the utility of this approach when assessing the effectiveness of monoclonal antibodies.
Assuntos
Anticorpos Neutralizantes , Tratamento Farmacológico da COVID-19 , COVID-19 , Pulmão , SARS-CoV-2 , Animais , Camundongos , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/genética , SARS-CoV-2/imunologia , SARS-CoV-2/fisiologia , COVID-19/virologia , COVID-19/imunologia , Pulmão/virologia , Pulmão/patologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Humanos , Modelos Animais de Doenças , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Anticorpos Monoclonais/uso terapêutico , Carga Viral/efeitos dos fármacos , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Replicação Viral/efeitos dos fármacos , Feminino , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/farmacologia , Antivirais/farmacologia , Antivirais/uso terapêuticoRESUMO
Neurodevelopmental disorders are major indications for genetic referral and have been linked to more than 1500 loci including genes encoding transcriptional regulators. The dysfunction of transcription factors often results in characteristic syndromic presentations; however, at least half of these patients lack a genetic diagnosis. The implementation of machine learning approaches has the potential to aid in the identification of new disease genes and delineate associated phenotypes. Next generation sequencing was performed in seven affected individuals with neurodevelopmental delay and dysmorphic features. Clinical characterization included reanalysis of available neuroimaging datasets and 2D portrait image analysis with GestaltMatcher. The functional consequences of ZSCAN10 loss were modelled in mouse embryonic stem cells (mESCs), including a knockout and a representative ZSCAN10 protein truncating variant. These models were characterized by gene expression and western blot analyses, chromatin immunoprecipitation and quantitative PCR (ChIP-qPCR) and immunofluorescence staining. Zscan10 knockout mouse embryos were generated and phenotyped. We prioritized bi-allelic ZSCAN10 loss-of-function variants in seven affected individuals from five unrelated families as the underlying molecular cause. RNA-sequencing analyses in Zscan10-/- mESCs indicated dysregulation of genes related to stem cell pluripotency. In addition, we established in mESCs the loss-of-function mechanism for a representative human ZSCAN10 protein truncating variant by showing alteration of its expression levels and subcellular localization, interfering with its binding to DNA enhancer targets. Deep phenotyping revealed global developmental delay, facial asymmetry and malformations of the outer ear as consistent clinical features. Cerebral MRI showed dysplasia of the semicircular canals as an anatomical correlate of sensorineural hearing loss. Facial asymmetry was confirmed as a clinical feature by GestaltMatcher and was recapitulated in the Zscan10 mouse model along with inner and outer ear malformations. Our findings provide evidence of a novel syndromic neurodevelopmental disorder caused by bi-allelic loss-of-function variants in ZSCAN10.
Assuntos
Camundongos Knockout , Transtornos do Neurodesenvolvimento , Adolescente , Animais , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Camundongos , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Fatores de Transcrição/genéticaRESUMO
There has been an exponential increase in the diagnosis of transthyretin amyloid cardiomyopathy (ATTR-CA). In response, the Midlands Amyloidosis Service was launched with the aim of providing patients with a timely diagnosis, remote expertise from the National Amyloidosis Centre and access to emerging transthyretin (TTR)-directed therapies. This was a descriptive study of a pilot hub-and-spoke model of delivering specialist amyloidosis care. Patients with suspected amyloidosis were referred from the wider Midlands region, and seen in a consultant-led multidisciplinary clinic. The diagnosis of ATTR-CA was established according to either the validated non-biopsy criteria or histological confirmation of ATTR deposits with imaging evidence of amyloid. Study endpoints were the volume of service provision and the time to diagnosis from the receipt of referral. Patients (n=173, age 75±2 years; male 72 %) were referred between 2019 and 2021. Eighty patients (46 %) were found to have cardiac amyloidosis, of whom 68 (85 %) had ATTR-CA. The median time from referral to diagnosis was 43 days. By removing the need for patients to travel to London, an average of 187 patient-miles was saved. Fifteen (9 %) patients with wild-type ATTR-CA received tafamidis under the Early Access to Medicine scheme; 10 (6 %) were enrolled into phase 3 clinical trials of RNA interference or antisense oligonucleotide therapies. Our results suggest that implementing a UK amyloidosis network appears feasible and would enhance equity of access to specialised amyloidosis healthcare for the increasing numbers of older patients found to have ATTR-CA.
Assuntos
Amiloidose , Pré-Albumina , Humanos , Masculino , Idoso , Estudos de Viabilidade , Instituições de Assistência Ambulatorial , LondresRESUMO
The successful development of a chemoprophylaxis against SARS-CoV-2 could provide a tool for infection prevention that is implementable alongside vaccination programmes. Nafamostat is a serine protease inhibitor that inhibits SARS-CoV-2 entry in vitro, but it has not been characterised for chemoprophylaxis in animal models. Clinically, nafamostat is limited to intravenous delivery and has an extremely short plasma half-life. This study sought to determine whether intranasal dosing of nafamostat at 5 mg/kg twice daily was able to prevent the airborne transmission of SARS-CoV-2 from infected to uninfected Syrian Golden hamsters. SARS-CoV-2 RNA was detectable in the throat swabs of the water-treated control group 4 days after cohabitation with a SARS-CoV-2 inoculated hamster. However, throat swabs from the intranasal nafamostat-treated hamsters remained SARS-CoV-2 RNA negative for the full 4 days of cohabitation. Significantly lower SARS-CoV-2 RNA concentrations were seen in the nasal turbinates of the nafamostat-treated group compared to the control (p = 0.001). A plaque assay quantified a significantly lower concentration of infectious SARS-CoV-2 in the lungs of the nafamostat-treated group compared to the control (p = 0.035). When taken collectively with the pathological changes observed in the lungs and nasal mucosa, these data are strongly supportive of the utility of intranasally delivered nafamostat for the prevention of SARS-CoV-2 infection.
Assuntos
COVID-19 , Animais , Cricetinae , COVID-19/prevenção & controle , SARS-CoV-2 , RNA Viral , Quimioprevenção , MesocricetusRESUMO
BACKGROUND: Enterochromaffin (EC) cell-derived 5-hydroxytryptamine (5-HT) is a mediator of toxin-induced reflexes, initiating emesis via vagal and central 5-HT3 receptors. The amine is also involved in gastrointestinal (GI) reflexes that are prosecretory and promotile, and recently 5-HT's roles in chemosensation in the distal bowel have been described. We set out to establish the efficacy of 5-HT signaling, local 5-HT levels and pharmacology in discrete regions of the mouse small and large intestine. We also investigated the inter-relationships between incretin hormones, glucagon-like peptide-1 (GLP-1) and gastric inhibitory polypeptide (GIP) and endogenous 5-HT in mucosal and motility assays. METHODS: Adult mouse GI mucosae were mounted in Ussing chambers and area-specific studies were performed to establish the 5-HT3 and 5-HT4 pharmacology, the sidedness of responses, and the inter-relationships between incretins and endogenous 5-HT. Natural fecal pellet transit in vitro and full-length GI transit in vivo were also measured. KEY RESULTS: We observed the greatest level of tonic and exogenous 5-HT-induced ion transport and highest levels of 5-HT in ascending colon mucosa. Here both 5-HT3 and 5-HT4 receptors were involved but elsewhere in the GI tract epithelial basolateral 5-HT4 receptors mediate 5-HT's prosecretory effect. Exendin-4 and GIP induced 5-HT release in the ascending colon, while L cell-derived PYY also contributed to GIP mucosal effects in the descending colon. Both peptides slowed colonic transit. CONCLUSIONS & INFERENCES: We provide functional evidence for paracrine interplay between 5-HT, GLP-1 and GIP, particularly in the colonic mucosal region. Basolateral epithelial 5-HT4 receptors mediated both 5-HT and incretin mucosal responses in healthy colon.
Assuntos
Incretinas , Serotonina , Camundongos , Animais , Serotonina/farmacologia , Incretinas/farmacologia , Polipeptídeo Inibidor Gástrico , Colo , Mucosa Intestinal , Peptídeo 1 Semelhante ao GlucagonRESUMO
Background: Ronapreve demonstrated clinical application in post-exposure prophylaxis, mild/moderate disease and in the treatment of seronegative patients with severe COVID19 prior to the emergence of the Omicron variant in late 2021. Numerous reports have described loss of in vitro neutralisation activity of Ronapreve and other monoclonal antibodies for BA.1 Omicron and subsequent sub-lineages of the Omicron variant. With some exceptions, global policy makers have recommended against the use of existing monoclonal antibodies in COVID19. Gaps in knowledge regarding the mechanism of action of monoclonal antibodies are noted, and further preclinical study will help understand positioning of new monoclonal antibodies under development. Objectives: The purpose of this study was to investigate the impact of Ronapreve on compartmental viral replication as a paradigm for a monoclonal antibody combination. The study also sought to confirm absence of in vivo activity against BA.1 Omicron (B.1.1.529) relative to the Delta (B.1.617.2) variant. Methods: Virological efficacy of Ronapreve was assessed in K18-hACE2 mice inoculated with either the SARS-CoV-2 Delta or Omicron variants. Viral replication in tissues was quantified using qRT-PCR to measure sub-genomic viral RNA to the E gene (sgE) as a proxy. A histological examination in combination with staining for viral antigen served to determine viral spread and associated damage. Results: Ronapreve reduced sub-genomic viral RNA levels in lung and nasal turbinate, 4 and 6 days post infection, for the Delta variant but not the Omicron variant of SARS-CoV-2 at doses 2-fold higher than those shown to be active against previous variants of the virus. It also appeared to block brain infection which is seen with high frequency in K18-hACE2 mice after Delta variant infection. At day 6, the inflammatory response to lung infection with the Delta variant was altered to a mild multifocal granulomatous inflammation in which the virus appeared to be confined. A similar tendency was also observed in Omicron infected, Ronapreve-treated animals. Conclusions: The current study provides evidence of an altered tissue response to the SARS-CoV-2 after treatment with a monoclonal antibody combination that retains neutralization activity. These data also demonstrate that experimental designs that reflect the treatment use case are achievable in animal models for monoclonal antibodies deployed against susceptible variants. Extreme caution should be taken when interpreting prophylactic experimental designs when assessing plausibility of monoclonal antibodies for treatment use cases.
RESUMO
Bariatric surgery improves glucose homeostasis, but the underlying mechanisms are not fully elucidated. Here, we show that the expression of sodium-glucose cotransporter 2 (SGLT2/Slc5a2) is reduced in the kidney of lean and obese mice following vertical sleeve gastrectomy (VSG). Indicating an important contribution of altered cotransporter expression to the impact of surgery, inactivation of the SGLT2/Slc5a2 gene by clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 attenuated the effects of VSG, with glucose excursions following intraperitoneal injection lowered by â¼30% in wild-type mice but by â¼20% in SGLT2-null animals. The effects of the SGLT2 inhibitor dapaglifozin were similarly blunted by surgery. Unexpectedly, effects of dapaglifozin were still observed in SGLT2-null mice, consistent with the existence of metabolically beneficial off-target effects of SGLT2 inhibitors. Thus, we describe a new mechanism involved in mediating the glucose-lowering effects of bariatric surgery.
Assuntos
Glicemia , Células Secretoras de Insulina , Inibidores do Transportador 2 de Sódio-Glicose , Transportador 2 de Glucose-Sódio/metabolismo , Animais , Glicemia/metabolismo , Gastrectomia , Glucose/metabolismo , Células Secretoras de Insulina/metabolismo , Rim/metabolismo , Camundongos , Camundongos Knockout , Transportador 2 de Glucose-Sódio/genética , Inibidores do Transportador 2 de Sódio-Glicose/farmacologiaRESUMO
Hereditary transthyretin-mediated amyloidosis (hATTR) is challenging to diagnose early owing to the heterogeneity of clinical presentation, which differs according to the TTR gene variant and its penetrance in each individual. The TTR variants seen most frequently in the UK and Ireland (T80A, V142I and V50M) differ to those commonly occurring in other geographic locations and warrant a specific consideration for diagnosis and genetic testing. In addition, recent availability of treatment for this condition has reinforced the need for a more consistent approach to the management of patients, including access to specialist services, genetic testing and counselling, and clinical investigation for families living in the UK and Ireland. A multidisciplinary panel of experts from the UK and Ireland was convened to identify the current challenges, provide recommendations, and develop a consensus for the diagnosis and screening of people with, or at risk of, hATTR. Over a series of meetings, experts shared their current practices and drafted, refined and approved a consensus statement. This consensus statement provides recommendations for three different groups: (1) people with symptoms raising a possibility of hATTR amyloidosis; (2) people with biopsy-confirmed hATTR amyloidosis; and (3) people without symptoms who may have hATTR amyloidosis (i.e. relatives of people with identified TTR variants). For each group, recommendations are made for the required steps for the diagnosis and follow-up of symptomatic patients, and for guidance on the specialist support for counselling and pre-symptomatic genetic testing of at-risk individuals. This guidance is intended to be practical and based on available evidence. The aim is for regional amyloid specialist centres to provide timely diagnosis, clinical screening, and treatment for individuals and their families with hATTR amyloidosis.
Assuntos
Neuropatias Amiloides Familiares , Pré-Albumina , Neuropatias Amiloides Familiares/diagnóstico , Neuropatias Amiloides Familiares/genética , Neuropatias Amiloides Familiares/terapia , Prova Pericial , Humanos , Irlanda , Pré-Albumina/genética , Reino UnidoRESUMO
OBJECTIVES: Obesity is a complex disease associated with a high risk of comorbidities. Gastric bypass surgery, an invasive procedure with low patient eligibility, is currently the most effective intervention that achieves sustained weight loss. This beneficial effect is attributed to alterations in gut hormone signaling. An attractive alternative is to pharmacologically mimic the effects of bariatric surgery by targeting several gut hormonal axes. The G protein-coupled receptor 39 (GPR39) expressed in the gastrointestinal tract has been shown to mediate ghrelin signaling and control appetite, food intake, and energy homeostasis, but the broader effect on gut hormones is largely unknown. A potent and efficacious GPR39 agonist (Cpd1324) was recently discovered, but the in vivo function was not addressed. Herein we studied the efficacy of the GPR39 agonist, Cpd1324, on metabolism and gut hormone secretion. METHODS: Body weight, food intake, and energy expenditure in GPR39 agonist-treated mice and GPR39 KO mice were studied in calorimetric cages. Plasma ghrelin, glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide-1 (GLP-1), and peptide YY (PYY) levels were measured. Organoids generated from murine and human small intestine and mouse colon were used to study GLP-1 and PYY release. Upon GPR39 agonist administration, dynamic changes in intracellular GLP-1 content were studied via immunostaining and changes in ion transport across colonic mucosa were monitored in Ussing chambers. The G protein activation underlying GPR39-mediated selective release of gut hormones was studied using bioluminescence resonance energy transfer biosensors. RESULTS: The GPR39 KO mice displayed a significantly increased food intake without corresponding increases in respiratory exchange ratios or energy expenditure. Oral administration of a GPR39 agonist induced an acute decrease in food intake and subsequent weight loss in high-fat diet (HFD)-fed mice without affecting their energy expenditure. The tool compound, Cpd1324, increased GLP-1 secretion in the mice as well as in mouse and human intestinal organoids, but not in GPR39 KO mouse organoids. In contrast, the GPR39 agonist had no effect on PYY or GIP secretion. Transepithelial ion transport was acutely affected by GPR39 agonism in a GLP-1- and calcitonin gene-related peptide (CGRP)-dependent manner. Analysis of Cpd1324 signaling properties showed activation of Gαq and Gαi/o signaling pathways in L cells, but not Gαs signaling. CONCLUSIONS: The GPR39 agonist described in this study can potentially be used by oral administration as a weight-lowering agent due to its stimulatory effect on GLP-1 secretion, which is most likely mediated through a unique activation of Gα subunits. Thus, GPR39 agonism may represent a novel approach to effectively treat obesity through selective modulation of gastrointestinal hormonal axes.
Assuntos
Hormônios Gastrointestinais/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Animais , Regulação do Apetite , Cirurgia Bariátrica , Peso Corporal , Ingestão de Alimentos , Células Enteroendócrinas , Polipeptídeo Inibidor Gástrico/farmacologia , Grelina/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/metabolismo , Peptídeo YY/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores dos Hormônios Gastrointestinais , Redução de PesoRESUMO
Human neuropeptide Y receptors (Y1R, Y2R, Y4R, and Y5R) belong to the superfamily of G protein-coupled receptors and play an important role in the regulation of food intake and energy metabolism. We identified and characterized the first selective Y4R allosteric antagonist (S)-VU0637120, an important step toward validating Y receptors as therapeutic targets for metabolic diseases. To obtain insight into the antagonistic mechanism of (S)-VU0637120, we conducted a variety of in vitro, ex vivo, and in silico studies. These studies revealed that (S)-VU0637120 selectively inhibits native Y4R function and binds in an allosteric site located below the binding pocket of the endogenous ligand pancreatic polypeptide in the core of the Y4R transmembrane domains. Taken together, our studies provide a first-of-its-kind tool for probing Y4R function and improve the general understanding of allosteric modulation, ultimately contributing to the rational development of allosteric modulators for peptide-activated G protein-coupled receptors (GPCRs).
Assuntos
Benzotiazóis/farmacologia , Receptores de Neuropeptídeo Y/antagonistas & inibidores , Sulfonamidas/farmacologia , Sítio Alostérico , Animais , Benzotiazóis/síntese química , Benzotiazóis/metabolismo , Chlorocebus aethiops , Células HEK293 , Humanos , Simulação de Acoplamento Molecular , Mutagênese , Mutação , Ligação Proteica , Receptores de Neuropeptídeo Y/genética , Receptores de Neuropeptídeo Y/metabolismo , Estereoisomerismo , Sulfonamidas/síntese química , Sulfonamidas/metabolismoRESUMO
The pathological changes underlying gastrointestinal (GI) dysfunction in Parkinson's disease (PD) are poorly understood and the symptoms remain inadequately treated. In this study we compared the functional and neurochemical changes in the enteric nervous system in the colon of adult, L-DOPA-responsive, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated common marmoset, with naïve controls. Measurement of mucosal vectorial ion transport, spontaneous longitudinal smooth muscle activity and immunohistochemical assessment of intrinsic innervation were each performed in discrete colonic regions of naïve and MPTP-treated marmosets. The basal short circuit current (Isc) was lower in MPTP-treated colonic mucosa while mucosal resistance was unchanged. There was no difference in basal cholinergic tone, however, there was an increased excitatory cholinergic response in MPTP-treated tissues when NOS was blocked with L-Nω-nitroarginine. The amplitude and frequency of spontaneous contractions in longitudinal smooth muscle as well as carbachol-evoked post-junctional contractile responses were unaltered, despite a decrease in choline acetyltransferase and an increase in the vasoactive intestinal polypeptide neuron numbers per ganglion in the proximal colon. There was a low-level inflammation in the proximal but not the distal colon accompanied by a change in α-synuclein immunoreactivity. This study suggests that MPTP treatment produces long-term alterations in colonic mucosal function associated with amplified muscarinic mucosal activity but decreased cholinergic innervation in myenteric plexi and increased nitrergic enteric neurotransmission. This suggests that long-term changes in either central or peripheral dopaminergic neurotransmission may lead to adaptive changes in colonic function resulting in alterations in ion transport across mucosal epithelia that may result in GI dysfunction in PD.
RESUMO
Cardiovascular diseases (CVDs) are the leading cause of disease burden globally, disproportionately affecting low and middle-income countries. The continued scarcity of literature on CVDs burden in Nepal has thwarted efforts to develop population-specific prevention and management strategies. This article reports the burden of CVDs in Nepal including, prevalence, incidence, and disability basis as well as trends over the past two decades by age and gender. We used the Institute of Health Metrics and Evaluation's Global Burden of Diseases database on cardiovascular disease from Nepal to describe the most recent data available (2017) and trends by age, gender and year from 1990 to 2017. Data are presented as percentages or as rates per 100,000 population. In 2017, CVDs contributed to 26·9% of total deaths and 12·8% of total DALYs in Nepal. Ischemic heart disease was the predominant CVDs, contributing 16·4% to total deaths and 7·5% to total DALYs. Cardiovascular disease incidence and mortality rates have increased from 1990 to 2017, with the burden greater among males and among older age groups. The leading risk factors for CVDs were determined to be high systolic blood pressure, high low density lipoprotein cholesterol, smoking, air pollution, a diet low in whole grains, and a diet low in fruit. CVDs are a major public health problem in Nepal contributing to the high DALYs with unacceptable numbers of premature deaths. There is an urgent need to address the increasing burden of CVDs and their associated risk factors, particularly high blood pressure, body mass index and unhealthy diet.
RESUMO
PURPOSE: Somatic variants in tumor necrosis factor receptor-associated factor 7 (TRAF7) cause meningioma, while germline variants have recently been identified in seven patients with developmental delay and cardiac, facial, and digital anomalies. We aimed to define the clinical and mutational spectrum associated with TRAF7 germline variants in a large series of patients, and to determine the molecular effects of the variants through transcriptomic analysis of patient fibroblasts. METHODS: We performed exome, targeted capture, and Sanger sequencing of patients with undiagnosed developmental disorders, in multiple independent diagnostic or research centers. Phenotypic and mutational comparisons were facilitated through data exchange platforms. Whole-transcriptome sequencing was performed on RNA from patient- and control-derived fibroblasts. RESULTS: We identified heterozygous missense variants in TRAF7 as the cause of a developmental delay-malformation syndrome in 45 patients. Major features include a recognizable facial gestalt (characterized in particular by blepharophimosis), short neck, pectus carinatum, digital deviations, and patent ductus arteriosus. Almost all variants occur in the WD40 repeats and most are recurrent. Several differentially expressed genes were identified in patient fibroblasts. CONCLUSION: We provide the first large-scale analysis of the clinical and mutational spectrum associated with the TRAF7 developmental syndrome, and we shed light on its molecular etiology through transcriptome studies.
Assuntos
Deficiência Intelectual , Transcriptoma , Exoma , Células Germinativas , Humanos , Deficiência Intelectual/genética , Mutação de Sentido Incorreto , Fenótipo , Transcriptoma/genética , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose TumoralRESUMO
In ATP6V0A2-related cutis laxa, the skin phenotype varies from a wrinkly skin to prominent cutis laxa and typically associates with skeletal and neurological manifestations. The phenotype remains incompletely characterized, especially in adult patients. Glycosylation defects and reduced acidification of secretory vesicles contribute to the pathogenesis, but the consequences at the clinical level remain to be determined. Moreover, the morphology of the elastic fibres has not been studied in ATP6V0A2-related cutis laxa, nor its relation with potential clinical risks. We report on the extreme variability in ATP6V0A2-related cutis laxa in 10 novel patients, expand the phenotype with emphysema and von Willebrand disease and hypothesize on the pathogenesis that might link both with deficiency of glycosylation and with elastic fibre anomalies. Our data will affect clinical management of patients with ATP6V0A2-related cutis laxa.
Assuntos
Cútis Laxa/genética , ATPases Translocadoras de Prótons/genética , Pele/patologia , Adulto , Idoso , Agenesia do Corpo Caloso/genética , Catarata/genética , Criança , Pré-Escolar , Códon sem Sentido , Consanguinidade , Cútis Laxa/patologia , Tecido Elástico/patologia , Enfisema/genética , Face/anormalidades , Feminino , Glicosilação , Transtornos Hemorrágicos/genética , Humanos , Masculino , Fenótipo , Processamento de Proteína Pós-Traducional , Sítios de Splice de RNA/genética , Adulto JovemRESUMO
The human Y4 receptor (Y4R) and its cognate ligand, pancreatic polypeptide (PP), are involved in the regulation of energy expenditure, satiety, and food intake. This system represents a potential target for the treatment of metabolic diseases and has been extensively investigated and validated in vivo. Here, we present the compound tBPC (tert-butylphenoxycyclohexanol), a novel and selective Y4R positive allosteric modulator that potentiates Y4R activation in G-protein signaling and arrestin3 recruitment experiments. The compound has no effect on the binding of the orthosteric ligands, implying its allosteric mode of action at the Y4R and evidence for a purely efficacy-driven positive allosteric modulation. Finally, the ability of tBPC to selectively potentiate Y4R agonism initiated by PP was confirmed in mouse descending colon mucosa preparations expressing native Y4R, demonstrating Y4R positive allosteric modulation in vitro.
Assuntos
Regulação Alostérica/efeitos dos fármacos , Cicloexanóis/química , Cicloexanóis/farmacologia , Proteínas de Ligação ao GTP/metabolismo , Receptores de Neuropeptídeo Y/agonistas , Receptores de Neuropeptídeo Y/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Arrestinas/metabolismo , Células COS , Chlorocebus aethiops , Células HEK293 , Humanos , Modelos MolecularesRESUMO
Twist transcription factors, members of the basic helix-loop-helix family, play crucial roles in mesoderm development in all animals. Humans have two paralogous genes, TWIST1 and TWIST2, and mutations in each gene have been identified in specific craniofacial disorders. Here, we describe a new clinical entity, Sweeney-Cox syndrome, associated with distinct de novo amino acid substitutions (p.Glu117Val and p.Glu117Gly) at a highly conserved glutamic acid residue located in the basic DNA binding domain of TWIST1, in two subjects with frontonasal dysplasia and additional malformations. Although about one hundred different TWIST1 mutations have been reported in patients with the dominant haploinsufficiency Saethre-Chotzen syndrome (typically associated with craniosynostosis), substitutions uniquely affecting the Glu117 codon were not observed previously. Recently, subjects with Barber-Say and Ablepharon-Macrostomia syndromes were found to harbor heterozygous missense substitutions in the paralogous glutamic acid residue in TWIST2 (p.Glu75Ala, p.Glu75Gln and p.Glu75Lys). To study systematically the effects of these substitutions in individual cells of the developing mesoderm, we engineered all five disease-associated alleles into the equivalent Glu29 residue encoded by hlh-8, the single Twist homolog present in Caenorhabditis elegans. This allelic series revealed that different substitutions exhibit graded severity, in terms of both gene expression and cellular phenotype, which we incorporate into a model explaining the various human disease phenotypes. The genetic analysis favors a predominantly dominant-negative mechanism for the action of amino acid substitutions at this highly conserved glutamic acid residue and illustrates the value of systematic mutagenesis of C. elegans for focused investigation of human disease processes.
Assuntos
Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Proteína 1 Relacionada a Twist/metabolismo , Anormalidades Múltiplas , Acrocefalossindactilia , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Sequência de Bases/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Criança , Pré-Escolar , Modelos Animais de Doenças , Anormalidades do Olho , Haploinsuficiência , Sequências Hélice-Alça-Hélice , Humanos , Macrostomia , Masculino , Mutação , Proteínas Nucleares/genética , Fenótipo , Domínios Proteicos/genética , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Proteína 1 Relacionada a Twist/genéticaRESUMO
Enteroendocrine cells (EECs) contain different combinations of hormones, which are released following stimulation of nutrient receptors that are selectively expressed by these cells. This chemosensation varies according to the intestinal area and species of interest, and responses to meals are rapidly modified following bariatric surgery. Such surgically-induced gastrointestinal (GI) changes highlight considerable enteroplasticity, however our understanding of even the acute physiological control and consequences of neuroendocrine peptide release is still under-developed. This review focuses on recent advances in nutrient G protein-coupled receptor (GPCR)-chemosensation in L cells, the patterns of peptide release and consequent changes in GI function. A clearer resolution of these mucosal mechanisms will shed light on potential receptor-target combinations that could provide less-invasive anti-diabesity strategies in future.
Assuntos
Células Enteroendócrinas/metabolismo , Mucosa Intestinal/metabolismo , Peptídeos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Cirurgia Bariátrica/métodos , Diabetes Mellitus/terapia , Alimentos , Humanos , Obesidade/terapia , Especificidade da EspécieAssuntos
Antituberculosos/uso terapêutico , Diarilquinolinas/uso terapêutico , Tuberculose Extensivamente Resistente a Medicamentos/tratamento farmacológico , Tuberculose Extensivamente Resistente a Medicamentos/cirurgia , Acessibilidade aos Serviços de Saúde , Nitroimidazóis/uso terapêutico , Oxazóis/uso terapêutico , Adulto , Antituberculosos/efeitos adversos , Diarilquinolinas/efeitos adversos , Quimioterapia Combinada/métodos , Humanos , Masculino , Nitroimidazóis/efeitos adversos , Oxazóis/efeitos adversos , PneumonectomiaRESUMO
BACKGROUND: Ototoxicity is a severe side effect of aminoglycoside antibiotics. Aminoglycosides are recommended for the treatment of multidrug-resistant TB (MDR-TB). N-Acetylcysteine (NAC) appears to protect against drug- and noise-induced hearing loss. This review aimed to determine if coadministering NAC with aminoglycoside affected ototoxicity development, and to assess the safety and tolerability of prolonged NAC administration. METHODS: Eligible studies reported on the efficacy of concomitant NAC and aminoglycoside administration for ototoxicity prevention or long-term (≥ 6 weeks) administration of NAC regardless of indication. Pooled estimates were calculated using a fixed-effects model. Heterogeneity was assessed using the I(2) statistic. RESULTS: Three studies reported that NAC reduced ototoxicity in 146 patients with end-stage renal failure receiving aminoglycosides. Pooled relative risk for otoprotection at 4-6 weeks was 0.14 (95% CI 0.05 to 0.45), and the risk difference was -33.3% (95% CI 45.5% to 21.2%). Eighty-three studies (N=9988) described the administration of NAC for >6 weeks. Abdominal pain, nausea and vomiting, diarrhoea and arthralgia were increased 1.4-2.2 times. DISCUSSION: This review provides evidence for the safety and otoprotective effect of NAC when coadministered with aminoglycoside. It represents a strong justification for a clinical trial to investigate the effect of concomitant NAC treatment in patients receiving aminoglycosides as part of MDR-TB treatment.